These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 8506386)
1. Breaching the conformational integrity of the catalytic triad of the serine protease plasmin: localized disruption of a side chain of His-603 strongly inhibits the amidolytic activity of human plasmin. Mhashilkar AM; Viswanatha T; Chibber BA; Castellino FJ Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5374-7. PubMed ID: 8506386 [TBL] [Abstract][Full Text] [Related]
2. Substrate behavior of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop. Gils A; Knockaert I; Declerck PJ Biochemistry; 1996 Jun; 35(23):7474-81. PubMed ID: 8652525 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the role of conserved His and Met residues among lipoxygenases by site-directed mutagenesis of recombinant human 5-lipoxygenase. Nguyen T; Falgueyret JP; Abramovitz M; Riendeau D J Biol Chem; 1991 Nov; 266(32):22057-62. PubMed ID: 1939225 [TBL] [Abstract][Full Text] [Related]
4. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases. Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429 [TBL] [Abstract][Full Text] [Related]
5. The effector roles of kringle 1 and kringle 2 in the enzymatic properties of recombinant tissue-type plasminogen activator as revealed by generation of recombinant molecules containing each kringle linked to the protease domain. Rydzewski A; Castellino FJ Arch Biochem Biophys; 1993 Jan; 300(1):472-82. PubMed ID: 8424682 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of a complement factor D mutant expressing enhanced catalytic activity. Kim S; Narayana SV; Volanakis JE J Biol Chem; 1995 Oct; 270(41):24399-405. PubMed ID: 7592653 [TBL] [Abstract][Full Text] [Related]
7. The NAD-glycohydrolase activity of the pertussis toxin S1 subunit. Involvement of the catalytic HIS-35 residue. Antoine R; Locht C J Biol Chem; 1994 Mar; 269(9):6450-7. PubMed ID: 8119996 [TBL] [Abstract][Full Text] [Related]
8. Post-translational processing and Thr-206 are required for glycosylasparaginase activity. Fisher KJ; Klein M; Park H; Vettese MB; Aronson NN FEBS Lett; 1993 Jun; 323(3):271-5. PubMed ID: 8500622 [TBL] [Abstract][Full Text] [Related]
9. The catalytic triad of the influenza C virus glycoprotein HEF esterase: characterization by site-directed mutagenesis and functional analysis. Pleschka S; Klenk HD; Herrler G J Gen Virol; 1995 Oct; 76 ( Pt 10)():2529-37. PubMed ID: 7595356 [TBL] [Abstract][Full Text] [Related]
10. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Amara AA; Rehm BH Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980 [TBL] [Abstract][Full Text] [Related]
11. Examination of the role of tyrosine-174 in the catalytic mechanism of the Arabidopsis thaliana chitinase: comparison of variant chitinases generated by site-directed mutagenesis and expressed in insect cells using baculovirus vectors. Verburg JG; Rangwala SH; Samac DA; Luckow VA; Huynh QK Arch Biochem Biophys; 1993 Jan; 300(1):223-30. PubMed ID: 8424656 [TBL] [Abstract][Full Text] [Related]
12. A catalytic triad is required by the non-heme haloperoxidases to perform halogenation. Pelletier I; Altenbuchner J; Mattes R Biochim Biophys Acta; 1995 Jul; 1250(2):149-57. PubMed ID: 7632719 [TBL] [Abstract][Full Text] [Related]
13. Identification of three catalytic triad constituents and Asp-225 essential for function of lysine-specific serine protease, Achromobacter protease I. Norioka S; Ohta S; Ohara T; Lim SI; Sakiyama F J Biol Chem; 1994 Jun; 269(25):17025-9. PubMed ID: 8006007 [TBL] [Abstract][Full Text] [Related]
14. Converting tissue plasminogen activator to a zymogen: a regulatory triad of Asp-His-Ser. Madison EL; Kobe A; Gething MJ; Sambrook JF; Goldsmith EJ Science; 1993 Oct; 262(5132):419-21. PubMed ID: 8211162 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of human lysyl hydroxylase expressed in insect cells. Identification of histidine residues and an aspartic acid residue critical for catalytic activity. Pirskanen A; Kaimio AM; Myllylä R; Kivirikko KI J Biol Chem; 1996 Apr; 271(16):9398-402. PubMed ID: 8621606 [TBL] [Abstract][Full Text] [Related]
16. Characterization of placental bikunin, a novel human serine protease inhibitor. Delaria KA; Muller DK; Marlor CW; Brown JE; Das RC; Roczniak SO; Tamburini PP J Biol Chem; 1997 May; 272(18):12209-14. PubMed ID: 9115295 [TBL] [Abstract][Full Text] [Related]
17. Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis. Wang S; Reed GL; Hedstrom L Biochemistry; 1999 Apr; 38(16):5232-40. PubMed ID: 10213631 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of plasmin by lysine derivatives. Ueshima S; Okada K; Matsuo O Clin Chim Acta; 1996 Feb; 245(1):7-18. PubMed ID: 8646816 [TBL] [Abstract][Full Text] [Related]
19. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
20. Molecular and biochemical evidence for the involvement of the Asp-333-His-523 pair in the catalytic mechanism of soluble epoxide hydrolase. Pinot F; Grant DF; Beetham JK; Parker AG; Borhan B; Landt S; Jones AD; Hammock BD J Biol Chem; 1995 Apr; 270(14):7968-74. PubMed ID: 7713895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]