These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8506399)

  • 1. Photosensory transduction in ciliates. I. An analysis of light-induced electrical and motile responses in Stentor coeruleus.
    Fabczak S; Fabczak H; Tao N; Song PS
    Photochem Photobiol; 1993 Apr; 57(4):696-701. PubMed ID: 8506399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms.
    Sobierajska K; Fabczak H; Fabczak S
    J Photochem Photobiol B; 2006 Jun; 83(3):163-71. PubMed ID: 16488618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A videomicroscopic study of the effect of l-cis-diltiazem on the photobehavior of Stentor coeruleus.
    Walerczyk M; Fabczak H; Fabczak S
    Photochem Photobiol; 2003 Mar; 77(3):339-42. PubMed ID: 12685664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosensory transduction in ciliates. Role of intracellular pH and comparison between Stentor coeruleus and Blepharisma japonicum.
    Fabczak H; Fabczak S; Song PS; Checcucci G; Ghetti F; Lenci F
    J Photochem Photobiol B; 1993 Nov; 21(1):47-52. PubMed ID: 8289111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH dependence of photosensory responses in Stentor coeruleus and model system.
    Walker EB; Yoon M; Song PS
    Biochim Biophys Acta; 1981 Feb; 634(2):289-308. PubMed ID: 6781541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeine-enhanced photomovement in the ciliate, Stentor coeruleus.
    Prusti RK; Song PS; Häder DP; Häder M
    Photochem Photobiol; 1984 Sep; 40(3):369-75. PubMed ID: 6435141
    [No Abstract]   [Full Text] [Related]  

  • 7. Phototaxis and photophobic responses in Stentor coeruleus. Action spectrum and role of Ca2+ fluxes.
    Kim IH; Prusti RK; Song PS; Häder DP; Häder M
    Biochim Biophys Acta; 1984 Jun; 799(3):298-304. PubMed ID: 6428464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosensory transduction in ciliates. II. Possible role of G-protein and cGMP in Stentor coeruleus.
    Fabczak H; Park PB; Fabczak S; Song PS
    Photochem Photobiol; 1993 Apr; 57(4):702-6. PubMed ID: 8389485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensory transduction in ciliates. IV. Modulation of the photomovement response of Blepharisma japonicum by cGMP.
    Fabczak H; Tao N; Fabczak S; Song PS
    Photochem Photobiol; 1993 May; 57(5):889-92. PubMed ID: 7687783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodynamic action in Stentor coeruleus sensitized by endogenous pigment stentorin.
    Yang KC; Prusti RK; Walker EB; Song PS; Watanabe M; Furuya M
    Photochem Photobiol; 1986 Mar; 43(3):305-10. PubMed ID: 3085113
    [No Abstract]   [Full Text] [Related]  

  • 11. Additional evidence for the cyclic GMP signaling pathway resulting in the photophobic behavior of Stentor coeruleus.
    Walerczyk M; Fabczak S
    Photochem Photobiol; 2001 Dec; 74(6):829-36. PubMed ID: 11783940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Photophobic response in Stentor coeruleus--electrophysiologic investigations].
    Walerczyk M; Fabczak H; Fabczak S
    Postepy Hig Med Dosw; 2000; 54(3):329-39. PubMed ID: 10941267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deuterium oxide (D2O) enhances the photosensitivity of Stentor coeruleus.
    Iwatsuki K; Song PS
    Biophys J; 1985 Dec; 48(6):1045-8. PubMed ID: 3004613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behaviors producing photodispersal in Stentor coeruleus.
    Menzies E; Das N; Wood DC
    Photochem Photobiol; 2004; 80(3):401-7. PubMed ID: 15623320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of phosphoinositide-dependent signalling to photomotility of Blepharisma ciliate.
    Fabczak H
    J Photochem Photobiol B; 2000; 55(2-3):120-7. PubMed ID: 10942076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for ciliary pigment localization in colored ciliates and implications for their photosensory transduction chain: a confocal microscopy study.
    Colombetti G; Checcucci G; Lucia S; Usai C; Ramoino P; Bianchini P; Pesce M; Vicidomini G; Diaspro A
    Microsc Res Tech; 2007 Dec; 70(12):1028-33. PubMed ID: 17661390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Messenger role of calcium in ciliary electromotor coupling: a reassessment.
    Mogami Y; Pernberg J; Machemer H
    Cell Calcium; 1990; 11(10):665-73. PubMed ID: 2128921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton release from Stentor photoreceptors in the excited states.
    Song PS; Walker EB; Auerbach RA; Robinson GW
    Biophys J; 1981 Aug; 35(2):551-5. PubMed ID: 6791722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colour dependence of the early receptor potential and late receptor potential in scallop distal photoreceptor.
    Cornwall MC; Gorman AL
    J Physiol; 1983 Jul; 340():307-34. PubMed ID: 6887052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coding of light intensity and stimulus duration in the receptor potential of the isolated rabbit retina.
    Hanitzsch R; Bartsch C; Wagner H
    Biomed Biochim Acta; 1985; 44(11-12):1673-9. PubMed ID: 4091839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.