These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8507590)

  • 21. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo.
    Chen SW; Wessel GM
    Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Inaba K
    Sci Rep; 2014 Oct; 4():6852. PubMed ID: 25358387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The distribution of E-cadherin during Xenopus laevis development.
    Levi G; Gumbiner B; Thiery JP
    Development; 1991 Jan; 111(1):159-69. PubMed ID: 2015791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbohydrate involvement in cellular interactions in sea urchin gastrulation.
    Khurrum M; Hernandez A; Eskalaei M; Badali O; Coyle-Thompson C; Oppenheimer SB
    Acta Histochem; 2004; 106(2):97-106. PubMed ID: 15147630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA.
    Wessel GM; Goldberg L; Lennarz WJ; Klein WH
    Dev Biol; 1989 Dec; 136(2):526-36. PubMed ID: 2583374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein tyrosine kinase activity following fertilization is required to complete gastrulation, but not for initial differentiation of endoderm and mesoderm in the sea urchin embryo.
    Livingston BT; VanWinkle CE; Kinsey WH
    Dev Biol; 1998 Jan; 193(1):90-9. PubMed ID: 9466890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cadherin switch marks germ layer formation in the diploblastic sea anemone
    Pukhlyakova EA; Kirillova AO; Kraus YA; Zimmermann B; Technau U
    Development; 2019 Oct; 146(20):. PubMed ID: 31540916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial expression of a forkhead homologue in the sea urchin embryo.
    Harada Y; Akasaka K; Shimada H; Peterson KJ; Davidson EH; Satoh N
    Mech Dev; 1996 Dec; 60(2):163-73. PubMed ID: 9025069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specification of endoderm in the sea urchin embryo.
    Godin RE; Klinzing DC; Porcaro WA; Ernst SG
    Mech Dev; 1997 Sep; 67(1):35-47. PubMed ID: 9347913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A protein of the basal lamina of the sea urchin embryo.
    Tesoro V; Zito F; Yokota Y; Nakano E; Sciarrino S; Matranga V
    Dev Growth Differ; 1998 Oct; 40(5):527-35. PubMed ID: 9783478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis.
    Zito F; Tesoro V; McClay DR; Nakano E; Matranga V
    Dev Biol; 1998 Apr; 196(2):184-92. PubMed ID: 9576831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Major temporal and spatial patterns of gene expression during differentiation of the sea urchin embryo.
    Kingsley PD; Angerer LM; Angerer RC
    Dev Biol; 1993 Jan; 155(1):216-34. PubMed ID: 8416835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WEE1-like CDK tyrosine kinase mRNA level is regulated temporally and spatially in sea urchin embryos.
    Nemer M; Stuebing EW
    Mech Dev; 1996 Aug; 58(1-2):75-88. PubMed ID: 8887318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and characterization of a 32-kDa protein that localizes to the sea urchin extraembryonic matrix, the hyaline layer.
    Robinson JJ
    Biochem Cell Biol; 1992 Aug; 70(8):623-8. PubMed ID: 1476700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial patterns of metallothionein mRNA expression in the sea urchin embryo.
    Angerer LM; Kawczynski G; Wilkinson DG; Nemer M; Angerer RC
    Dev Biol; 1986 Aug; 116(2):543-7. PubMed ID: 3732619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo.
    Burdsal CA; Alliegro MC; McClay DR
    Dev Biol; 1991 Apr; 144(2):327-34. PubMed ID: 1707016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo.
    Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR
    Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.