BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8507652)

  • 1. Identification and characterization of two enzymes involved in the intracellular metabolism of cobalamin. Cyanocobalamin beta-ligand transferase and microsomal cob(III)alamin reductase.
    Pezacka EH
    Biochim Biophys Acta; 1993 Jun; 1157(2):167-77. PubMed ID: 8507652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical evidence that the pduS gene encodes a bifunctional cobalamin reductase.
    Sampson EM; Johnson CLV; Bobik TA
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1169-1177. PubMed ID: 15817784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of Cob(III)alamin to Cob(II)alamin in Salmonella enterica serovar typhimurium LT2.
    Fonseca MV; Escalante-Semerena JC
    J Bacteriol; 2000 Aug; 182(15):4304-9. PubMed ID: 10894741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome b5/cytochrome b5 reductase complex in rat liver microsomes has NADH-linked aquacobalamin reductase activity.
    Watanabe F; Nakano Y; Saido H; Tamura Y; Yamanaka H
    J Nutr; 1992 Apr; 122(4):940-4. PubMed ID: 1552368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans.
    Bito T; Yabuta Y; Ichiyanagi T; Kawano T; Watanabe F
    FEBS Open Bio; 2014; 4():722-9. PubMed ID: 25161880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in protonation associated with substrate binding and Cob(I)alamin formation in cobalamin-dependent methionine synthase.
    Jarrett JT; Choi CY; Matthews RG
    Biochemistry; 1997 Dec; 36(50):15739-48. PubMed ID: 9398303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalamin uptake and reactivation occurs through specific protein interactions in the methionine synthase-methionine synthase reductase complex.
    Wolthers KR; Scrutton NS
    FEBS J; 2009 Apr; 276(7):1942-51. PubMed ID: 19243433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular processing of vitamin B
    Hannibal L; Jacobsen DW
    Vitam Horm; 2022; 119():275-298. PubMed ID: 35337623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme.
    Jarrett JT; Hoover DM; Ludwig ML; Matthews RG
    Biochemistry; 1998 Sep; 37(36):12649-58. PubMed ID: 9730838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of conversion of human apo- to holomethionine synthase by various forms of cobalamin.
    Kolhouse JF; Utley C; Stabler SP; Allen RH
    J Biol Chem; 1991 Dec; 266(34):23010-5. PubMed ID: 1744096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-Linked Coordination Chemistry Directs Vitamin B
    Banerjee R; Gouda H; Pillay S
    Acc Chem Res; 2021 Apr; 54(8):2003-2013. PubMed ID: 33797888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome b5-like hemoprotein/cytochrome b5 reductase complex in rat liver mitochondria has NADH-linked aquacobalamin reductase activity.
    Saido H; Watanabe F; Tamura Y; Miyatake K; Ito A; Yubisui T; Nakano Y
    J Nutr; 1994 Jul; 124(7):1037-40. PubMed ID: 8027853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin.
    Jarrett JT; Huang S; Matthews RG
    Biochemistry; 1998 Apr; 37(16):5372-82. PubMed ID: 9548919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human ATP:Cob(I)alamin adenosyltransferase and its interaction with methionine synthase reductase.
    Leal NA; Olteanu H; Banerjee R; Bobik TA
    J Biol Chem; 2004 Nov; 279(46):47536-42. PubMed ID: 15347655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathionylcobalamin as an intermediate in the formation of cobalamin coenzymes.
    Pezacka E; Green R; Jacobsen DW
    Biochem Biophys Res Commun; 1990 Jun; 169(2):443-50. PubMed ID: 2357215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalamin-dependent methionine synthase: probing the role of the axial base in catalysis of methyl transfer between methyltetrahydrofolate and exogenous cob(I)alamin or cob(I)inamide.
    Dorweiler JS; Finke RG; Matthews RG
    Biochemistry; 2003 Dec; 42(49):14653-62. PubMed ID: 14661978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenic mutations differentially affect the catalytic activities of the human B12-processing chaperone CblC and increase futile redox cycling.
    Gherasim C; Ruetz M; Li Z; Hudolin S; Banerjee R
    J Biol Chem; 2015 May; 290(18):11393-402. PubMed ID: 25809485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalamin binding and cobalamin-dependent enzyme activity in normal and mutant human fibroblasts.
    Mellman I; Willard HF; Rosenberg LE
    J Clin Invest; 1978 Nov; 62(5):952-60. PubMed ID: 30783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial vitamin B12-binding proteins in patients with inborn errors of cobalamin metabolism.
    Moras E; Hosack A; Watkins D; Rosenblatt DS
    Mol Genet Metab; 2007 Feb; 90(2):140-7. PubMed ID: 17011224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand trans influence governs conformation in cobalamin-dependent methionine synthase.
    Fleischhacker AS; Matthews RG
    Biochemistry; 2007 Oct; 46(43):12382-92. PubMed ID: 17924667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.