These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 8507677)
1. Peroxisomal oxidation of the steroid side chain in bile acid formation. Pedersen JI Biochimie; 1993; 75(3-4):159-65. PubMed ID: 8507677 [TBL] [Abstract][Full Text] [Related]
2. Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger. Kase BF; Björkhem I; Hågå P; Pedersen JI J Clin Invest; 1985 Feb; 75(2):427-35. PubMed ID: 3973012 [TBL] [Abstract][Full Text] [Related]
3. In vivo and vitro studies on formation of bile acids in patients with Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid. Kase BF; Pedersen JI; Strandvik B; Björkhem I J Clin Invest; 1985 Dec; 76(6):2393-402. PubMed ID: 4077985 [TBL] [Abstract][Full Text] [Related]
4. Clofibrate does not induce peroxisomal 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoyl coenzyme A oxidation in rat liver. Evidence that this reaction is catalyzed by an enzyme system different from that of peroxisomal acyl-coenzyme A oxidation. Pedersen JI; Hvattum E; Flatabø T; Björkhem I Biochem Int; 1988 Jul; 17(1):163-9. PubMed ID: 3190714 [TBL] [Abstract][Full Text] [Related]
5. Comparison of side chain oxidation of potential C27-bile acid intermediates between mitochondria and peroxisomes of the rat liver: presence of beta-oxidation activity for bile acid biosynthesis in mitochondria. Une M; Konishi M; Yoshii M; Kuramoto T; Hoshita T J Lipid Res; 1996 Dec; 37(12):2550-6. PubMed ID: 9017507 [TBL] [Abstract][Full Text] [Related]
6. Stereochemistry of intermediates in the conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid to cholic acid by rat liver peroxisomes. Une M; Izumi N; Hoshita T J Biochem; 1993 Feb; 113(2):141-3. PubMed ID: 8468319 [TBL] [Abstract][Full Text] [Related]
7. Role of peroxisomes in the biosynthesis of bile acids. Björkhem I; Kase BF; Pedersen JI Scand J Clin Lab Invest Suppl; 1985; 177():23-31. PubMed ID: 3865345 [TBL] [Abstract][Full Text] [Related]
8. Identification of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholest-24-enoic acid as an intermediate in the peroxisomal conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid to cholic acid. Ostlund Farrants AK; Björkhem I; Pedersen JI Biochim Biophys Acta; 1989 Apr; 1002(2):198-202. PubMed ID: 2930767 [TBL] [Abstract][Full Text] [Related]
10. Formation of chenodeoxycholic acid from 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid by rat liver peroxisomes. Prydz K; Kase BF; Björkhem I; Pedersen JI J Lipid Res; 1986 Jun; 27(6):622-8. PubMed ID: 3746130 [TBL] [Abstract][Full Text] [Related]
11. Configuration of the 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-enoic acid, an intermediate in the peroxisomal conversion of 3 alpha,7 alpha,12-trihydroxy-5 beta-cholestanoic acid to cholic acid in rat liver. Farrants AK; Andersen GI; Byström SE Biochem Int; 1992 Mar; 26(4):725-30. PubMed ID: 1610376 [TBL] [Abstract][Full Text] [Related]
12. In vitro formation of bile acids from di- and trihydroxy-5 beta-cholestanoic acid in human liver peroxisomes. Kase BF; Prydz K; Björkhem I; Pedersen JI Biochim Biophys Acta; 1986 Jun; 877(1):37-42. PubMed ID: 3013317 [TBL] [Abstract][Full Text] [Related]
13. New insights in peroxisomal beta-oxidation. Implications for human peroxisomal disorders. Van Veldhoven PP Verh K Acad Geneeskd Belg; 1998; 60(3):195-214. PubMed ID: 9803880 [TBL] [Abstract][Full Text] [Related]
14. Study on stereospecificity of enzyme reaction related to peroxisomal bile acid synthesis in rat liver. Koibuchi Y; Yamada J; Watanabe T; Kurosawa T; Tohma M; Suga T Chem Pharm Bull (Tokyo); 1992 Feb; 40(2):446-8. PubMed ID: 1351423 [TBL] [Abstract][Full Text] [Related]
15. Human hepatoblastoma cells (HepG2) and rat hepatoma cells are defective in important enzyme activities in the oxidation of the C27 steroid side chain in bile acid formation. Farrants AK; Nilsson A; Pedersen JI J Lipid Res; 1993 Dec; 34(12):2041-50. PubMed ID: 8301225 [TBL] [Abstract][Full Text] [Related]
16. Substrate stereospecificity in oxidation of (25S)-3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoyl-CoA by peroxisomal trihydroxy-5 beta-cholestanoyl-CoA oxidase. Pedersen JI; Veggan T; Björkhem I Biochem Biophys Res Commun; 1996 Jul; 224(1):37-42. PubMed ID: 8694830 [TBL] [Abstract][Full Text] [Related]
17. Importance of peroxisomes in the formation of chenodeoxycholic acid in human liver. Metabolism of 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoic acid in Zellweger syndrome. Kase BF; Pedersen JI; Wathne KO; Gustafsson J; Björkhem I Pediatr Res; 1991 Jan; 29(1):64-9. PubMed ID: 2000261 [TBL] [Abstract][Full Text] [Related]
19. The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di- and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. Vanhove GF; Van Veldhoven PP; Fransen M; Denis S; Eyssen HJ; Wanders RJ; Mannaerts GP J Biol Chem; 1993 May; 268(14):10335-44. PubMed ID: 8387517 [TBL] [Abstract][Full Text] [Related]
20. Effect of the side-chain structure on the specificity of beta-oxidation in bile acid biosynthesis in rat liver homogenates. Kurosawa T; Sato M; Watanabe T; Suga T; Tohma M J Lipid Res; 1997 Dec; 38(12):2589-602. PubMed ID: 9458282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]