These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 8508126)

  • 1. [The role of NR-1 protein, specific for heterochromatin, during compactization of euchromatin regions, upon mosaic type variegation].
    Demakov OV; Beliaeva ES; Umbetova GKh; Zhimulev IF
    Dokl Akad Nauk; 1993 Apr; 329(5):655-7. PubMed ID: 8508126
    [No Abstract]   [Full Text] [Related]  

  • 2. [Trans-effect of modifiers on position-effect variegation in a set of euchromatin-heterochromatin rearrangements in Drosophila melanogaster].
    Popkova AM; Rasheva VI; Tolchkov EV; Alatortsev VE
    Genetika; 2001 Oct; 37(10):1430-4. PubMed ID: 11761621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Distorted heterochromatin replication in Drosophila melanogaster polytene chromosomes as a result of euchromatin-heterochromatin rearrangements].
    Gvozdev VA; Abramov IuA; Kogan GL; Lavrov SA
    Genetika; 2007 Jan; 43(1):18-26. PubMed ID: 17333934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction systems between heterochromatin and euchromatin in Drosophila melanogaster.
    Palumbo G; Berloco M; Fanti L; Bozzetti MP; Massari S; Caizzi R; Caggese C; Spinelli L; Pimpinelli S
    Genetica; 1994; 94(2-3):267-74. PubMed ID: 7896145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an understanding of position effect variegation.
    Tartof KD; Bishop C; Jones M; Hobbs CA; Locke J
    Dev Genet; 1989; 10(3):162-76. PubMed ID: 2500281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position effect variegation in Drosophila: towards a genetics of chromatin assembly.
    Eissenberg JC
    Bioessays; 1989 Jul; 11(1):14-7. PubMed ID: 2505764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Disruption of polytenization of DNA from the euchromatin region of the Drosophila melanogaster X-chromosome, caused by euheterochromatin restructuring].
    Lavrov SA; Tolchkov EV; Kramerova IA; Gvozdev VA
    Mol Biol (Mosk); 1998; 32(6):992-7. PubMed ID: 9929876
    [No Abstract]   [Full Text] [Related]  

  • 8. Heterochromatin and gene expression in Drosophila.
    Weiler KS; Wakimoto BT
    Annu Rev Genet; 1995; 29():577-605. PubMed ID: 8825487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High density of an SAR-associated motif differentiates heterochromatin from euchromatin.
    Strausbaugh LD; Williams SM
    J Theor Biol; 1996 Nov; 183(2):159-67. PubMed ID: 8977875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inheritance of stress-induced, ATF-2-dependent epigenetic change.
    Seong KH; Li D; Shimizu H; Nakamura R; Ishii S
    Cell; 2011 Jun; 145(7):1049-61. PubMed ID: 21703449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila.
    Ebert A; Schotta G; Lein S; Kubicek S; Krauss V; Jenuwein T; Reuter G
    Genes Dev; 2004 Dec; 18(23):2973-83. PubMed ID: 15574598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 5.9-kb tandem repeat at the euchromatin-heterochromatin boundary of the X chromosome of Drosophila melanogaster.
    O'Hare K; Chadwick BP; Constantinou A; Davis AJ; Mitchelson A; Tudor M
    Mol Genet Genomics; 2002 Jul; 267(5):647-55. PubMed ID: 12172804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Contribution of the SuUR gene to the organization of epigenetically repressed regions of Drosophila melanogaster chromosomes].
    Kolesnikova TD; Andreeva EN; Pindiurin AV; Anan'ko NG; Beliakin SN; Shloma VV; Iurlova AA; Makunin IV; Pokholkova GV; Volkova EI; Zarutskaia EA; Kokoza EB; Seneshin VF; Beliaeva ES; Zhimulev IF
    Genetika; 2006 Aug; 42(8):1013-28. PubMed ID: 17025152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Increased mitotic crossing over of heterochromatin in the first cleavage division of Drosophila melanogaster].
    Omel'ianchuk LV; Volkova EI
    Genetika; 1995 Jun; 31(6):804-8. PubMed ID: 7635319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin.
    Sarcinella E; Zuzarte PC; Lau PN; Draker R; Cheung P
    Mol Cell Biol; 2007 Sep; 27(18):6457-68. PubMed ID: 17636032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster.
    Yin H; Lin H
    Nature; 2007 Nov; 450(7167):304-8. PubMed ID: 17952056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone modification in constitutive heterochromatin versus unexpressed euchromatin in human cells.
    Jiang G; Yang F; Sanchez C; Ehrlich M
    J Cell Biochem; 2004 Oct; 93(2):286-300. PubMed ID: 15368356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Position-effect variegation after 60 years.
    Henikoff S
    Trends Genet; 1990 Dec; 6(12):422-6. PubMed ID: 2087785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hip, an HP1-interacting protein, is a haplo- and triplo-suppressor of position effect variegation.
    Schwendemann A; Matkovic T; Linke C; Klebes A; Hofmann A; Korge G
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):204-9. PubMed ID: 18162556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3.
    Rudolph T; Yonezawa M; Lein S; Heidrich K; Kubicek S; Schäfer C; Phalke S; Walther M; Schmidt A; Jenuwein T; Reuter G
    Mol Cell; 2007 Apr; 26(1):103-15. PubMed ID: 17434130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.