These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 8509121)
21. UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Vass I; Sass L; Spetea C; Bakou A; Ghanotakis DF; Petrouleas V Biochemistry; 1996 Jul; 35(27):8964-73. PubMed ID: 8688433 [TBL] [Abstract][Full Text] [Related]
22. Leaf movements and photoinhibition in relation to water stress in field-grown beans. Pastenes C; Pimentel P; Lillo J J Exp Bot; 2005 Jan; 56(411):425-33. PubMed ID: 15596474 [TBL] [Abstract][Full Text] [Related]
23. Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Hongbo S; Zongsuo L; Mingan S; Shimeng S; Zanmin H Colloids Surf B Biointerfaces; 2005 Jul; 43(3-4):221-7. PubMed ID: 15975772 [TBL] [Abstract][Full Text] [Related]
24. [Effects of osmotic stress on chlorophyll fluorescence parameters of wheat seedling]. Zhao L; Deng X; Shan L Ying Yong Sheng Tai Xue Bao; 2005 Jul; 16(7):1261-4. PubMed ID: 16252863 [TBL] [Abstract][Full Text] [Related]
25. Fluorescence quenching by chlorophyll cations in photosystem II. Schweitzer RH; Brudvig GW Biochemistry; 1997 Sep; 36(38):11351-9. PubMed ID: 9298954 [TBL] [Abstract][Full Text] [Related]
26. Long-term drought results in a reversible decline in photosynthetic capacity in mango leaves, not just a decrease in stomatal conductance. Damour G; Vandame M; Urban L Tree Physiol; 2009 May; 29(5):675-84. PubMed ID: 19324697 [TBL] [Abstract][Full Text] [Related]
27. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH. Bruce D; Samson G; Carpenter C Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772 [TBL] [Abstract][Full Text] [Related]
28. Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Niinemets U; Valladares F Plant Biol (Stuttg); 2004 May; 6(3):254-68. PubMed ID: 15143434 [TBL] [Abstract][Full Text] [Related]
29. Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics. Liang Y; Chen H; Tang MJ; Yang PF; Shen SH Physiol Plant; 2007 Nov; 131(3):508-17. PubMed ID: 18251888 [TBL] [Abstract][Full Text] [Related]
30. Greater impact of extreme drought on photosynthesis of grasslands exposed to a warmer climate in spite of acclimation. Zavalloni C; Gielen B; De Boeck HJ; Lemmens CM; Ceulemans R; Nijs I Physiol Plant; 2009 May; 136(1):57-72. PubMed ID: 19374719 [TBL] [Abstract][Full Text] [Related]
31. Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. Valladares F; Dobarro I; Sánchez-Gómez D; Pearcy RW J Exp Bot; 2005 Jan; 56(411):483-94. PubMed ID: 15569705 [TBL] [Abstract][Full Text] [Related]
32. Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta). Figueroa FL; Israel A; Neori A; Martínez B; Malta EJ; Put A; Inken S; Marquardt R; Abdala R; Korbee N Mar Pollut Bull; 2010 Oct; 60(10):1768-78. PubMed ID: 20619863 [TBL] [Abstract][Full Text] [Related]
33. Non-invasive monitoring of the light-induced cyclic photosynthetic electron flow during cold hardening in wheat leaves. Apostol S; Szalai G; Sujbert L; Popova LP; Janda T Z Naturforsch C J Biosci; 2006; 61(9-10):734-40. PubMed ID: 17137122 [TBL] [Abstract][Full Text] [Related]
34. Cooperative character of the interaction of the two photochemical photosynthetic systems. Sorokin EM; Tumerman LA Mol Biol; 1971; 5(5):603-12. PubMed ID: 5154981 [No Abstract] [Full Text] [Related]
35. [Effect of electron transport chain cofactors of photosynthesis on light-induced changes in the fluorescence of chlorophyll a in vivo and in model systems]. Grigor'ev IuS; Gol'd VM; Gaevskiĭ NA Biofizika; 1972; 17(5):850-5. PubMed ID: 5086087 [No Abstract] [Full Text] [Related]
36. [Effect of low temperature on the resistance and functional activity of the photosynthetic apparatus of wheat plants]. Venzhik IuV; Titov AF; Talanova VV; Frolova SA; Talanov AV; Hazarkina EA Izv Akad Nauk Ser Biol; 2011; (2):171-7. PubMed ID: 21506391 [TBL] [Abstract][Full Text] [Related]
37. Reduced light and moderate water deficiency sustain nitrogen assimilation and sucrose degradation at low temperature in durum wheat. Majláth I; Darko E; Palla B; Nagy Z; Janda T; Szalai G J Plant Physiol; 2016 Feb; 191():149-58. PubMed ID: 26788956 [TBL] [Abstract][Full Text] [Related]
38. [Model of water participation in stabilization of charges in primary photosynthesis events]. Fok MV; Borisov AIu Mol Biol (Mosk); 1981; 15(3):575-82. PubMed ID: 7254210 [TBL] [Abstract][Full Text] [Related]
39. [Mechanism of water decomposition in the photosynthetic process]. Kutiurin VM Izv Akad Nauk SSSR Biol; 1970; 4():569-80. PubMed ID: 5482751 [No Abstract] [Full Text] [Related]
40. Different sites of photodamage in chilling-sensitive (sorghum) and chilling-resistant (barley and wheat) plants. Sharma PK; Richards GE; Hall DO; Singhal GS Indian J Biochem Biophys; 1994 Dec; 31(6):459-63. PubMed ID: 7875714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]