These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8509374)
1. Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. Wells-Knecht MC; Huggins TG; Dyer DG; Thorpe SR; Baynes JW J Biol Chem; 1993 Jun; 268(17):12348-52. PubMed ID: 8509374 [TBL] [Abstract][Full Text] [Related]
2. Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. Huggins TG; Wells-Knecht MC; Detorie NA; Baynes JW; Thorpe SR J Biol Chem; 1993 Jun; 268(17):12341-7. PubMed ID: 8509373 [TBL] [Abstract][Full Text] [Related]
3. Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins. Kamei A Biol Pharm Bull; 1993 Sep; 16(9):870-5. PubMed ID: 8268853 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of lysine oxidation in human lens crystallins during aging and in diabetes. Fan X; Zhang J; Theves M; Strauch C; Nemet I; Liu X; Qian J; Giblin FJ; Monnier VM J Biol Chem; 2009 Dec; 284(50):34618-27. PubMed ID: 19854833 [TBL] [Abstract][Full Text] [Related]
5. Racemization of tyrosine in the insoluble protein fraction of brunescent aging human lenses. Luthra M; Ranganathan D; Ranganathan S; Balasubramanian D J Biol Chem; 1994 Sep; 269(36):22678-82. PubMed ID: 8077220 [TBL] [Abstract][Full Text] [Related]
6. Isolation and analysis of dityrosine from enzyme-catalyzed oxidation of tyrosine and X-irradiated peptide and proteins. Sharma M; Jain R Chem Biol Interact; 1998 Jan; 108(3):171-85. PubMed ID: 9528688 [TBL] [Abstract][Full Text] [Related]
7. Photoreactions of human lens monomeric crystallins. Andley UP; Clark BA Biochim Biophys Acta; 1989 Aug; 997(3):284-91. PubMed ID: 2548626 [TBL] [Abstract][Full Text] [Related]
8. Rate of formation of AGEs during ascorbate glycation and during aging in human lens tissue. Cheng R; Lin B; Ortwerth BJ Biochim Biophys Acta; 2002 May; 1587(1):65-74. PubMed ID: 12009426 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of glycated proteins: age-dependent accumulation of N epsilon-(carboxymethyl)lysine in lens proteins. Dunn JA; Patrick JS; Thorpe SR; Baynes JW Biochemistry; 1989 Nov; 28(24):9464-8. PubMed ID: 2514802 [TBL] [Abstract][Full Text] [Related]
10. The oxidative modification of lens proteins. Garland D; Russell P; Zigler JS Basic Life Sci; 1988; 49():347-52. PubMed ID: 3250491 [TBL] [Abstract][Full Text] [Related]
11. Dityrosine formation in the proteins of the eye lens. Guptasarma P; Balasubramanian D Curr Eye Res; 1992 Nov; 11(11):1121-5. PubMed ID: 1336447 [TBL] [Abstract][Full Text] [Related]
12. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
13. Increase in the intramolecular disulfide bonding of alpha-A crystallin during aging of the human lens. Takemoto L Exp Eye Res; 1996 Nov; 63(5):585-90. PubMed ID: 8994362 [TBL] [Abstract][Full Text] [Related]
14. Glycation of human lens proteins: preferential glycation of alpha A subunits. Swamy MS; Abraham A; Abraham EC Exp Eye Res; 1992 Mar; 54(3):337-45. PubMed ID: 1521566 [TBL] [Abstract][Full Text] [Related]
15. Glycation of human lens crystallins: effect of age and aspirin treatment. Cherian M; Abraham EC Ophthalmic Res; 1993; 25(6):349-54. PubMed ID: 8309673 [TBL] [Abstract][Full Text] [Related]
16. The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine. Kato Y; Kitamoto N; Kawai Y; Osawa T Free Radic Biol Med; 2001 Sep; 31(5):624-32. PubMed ID: 11522447 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence polarization and circular dichroism studies on aging human lens proteins. Lerman S; Mandal K Ophthalmic Res; 1991; 23(3):147-53. PubMed ID: 1945287 [TBL] [Abstract][Full Text] [Related]
18. Comparative investigations on water-soluble crystallins of the embryonic, fetal, and postnatal human lens during development and ageing. Trifonova N; Stamenova M; Boulanov I; Goranov M; Bours J Ger J Ophthalmol; 1996 Nov; 5(6):454-60. PubMed ID: 9479536 [TBL] [Abstract][Full Text] [Related]
19. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related]
20. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]