These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 8510142)
1. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant. Mittl PR; Berry A; Scrutton NS; Perham RN; Schulz GE J Mol Biol; 1993 May; 231(2):191-5. PubMed ID: 8510142 [TBL] [Abstract][Full Text] [Related]
2. New enzymes for old: redesigning the coenzyme and substrate specificities of glutathione reductase. Perham RN; Scrutton NS; Berry A Bioessays; 1991 Oct; 13(10):515-25. PubMed ID: 1755827 [TBL] [Abstract][Full Text] [Related]
3. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant. Hurley JH; Chen R; Dean AM Biochemistry; 1996 May; 35(18):5670-8. PubMed ID: 8639526 [TBL] [Abstract][Full Text] [Related]
4. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+. Didierjean C; Rahuel-Clermont S; Vitoux B; Dideberg O; Branlant G; Aubry A J Mol Biol; 1997 May; 268(4):739-59. PubMed ID: 9175858 [TBL] [Abstract][Full Text] [Related]
5. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii. Friesen JA; Lawrence CM; Stauffacher CV; Rodwell VW Biochemistry; 1996 Sep; 35(37):11945-50. PubMed ID: 8810898 [TBL] [Abstract][Full Text] [Related]
6. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Scrutton NS; Berry A; Perham RN Nature; 1990 Jan; 343(6253):38-43. PubMed ID: 2296288 [TBL] [Abstract][Full Text] [Related]
7. Anatomy of an engineered NAD-binding site. Mittl PR; Berry A; Scrutton NS; Perham RN; Schulz GE Protein Sci; 1994 Sep; 3(9):1504-14. PubMed ID: 7833810 [TBL] [Abstract][Full Text] [Related]
8. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli. Tanaka N; Nonaka T; Tanabe T; Yoshimoto T; Tsuru D; Mitsui Y Biochemistry; 1996 Jun; 35(24):7715-30. PubMed ID: 8672472 [TBL] [Abstract][Full Text] [Related]
9. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site. Danielson UH; Jiang F; Hansson LO; Mannervik B Biochemistry; 1999 Jul; 38(29):9254-63. PubMed ID: 10413499 [TBL] [Abstract][Full Text] [Related]
10. The three-dimensional structure of glutathione reductase from Escherichia coli at 3.0 A resolution. Ermler U; Schulz GE Proteins; 1991; 9(3):174-9. PubMed ID: 2006135 [TBL] [Abstract][Full Text] [Related]
11. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution. Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369 [TBL] [Abstract][Full Text] [Related]
12. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P; Colman RF Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490 [TBL] [Abstract][Full Text] [Related]
13. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution. Charron C; Talfournier F; Isupov MN; Littlechild JA; Branlant G; Vitoux B; Aubry A J Mol Biol; 2000 Mar; 297(2):481-500. PubMed ID: 10715215 [TBL] [Abstract][Full Text] [Related]
14. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). Bubner P; Klimacek M; Nidetzky B FEBS Lett; 2008 Jan; 582(2):233-7. PubMed ID: 18082142 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity. Duée E; Olivier-Deyris L; Fanchon E; Corbier C; Branlant G; Dideberg O J Mol Biol; 1996 Apr; 257(4):814-38. PubMed ID: 8636984 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional structure prediction of the NAD binding site of proton-pumping transhydrogenase from Escherichia coli. Fjellström O; Olausson T; Hu X; Källebring B; Ahmad S; Bragg PD; Rydström J Proteins; 1995 Feb; 21(2):91-104. PubMed ID: 7777492 [TBL] [Abstract][Full Text] [Related]
17. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities. Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019 [TBL] [Abstract][Full Text] [Related]
18. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli. Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297 [TBL] [Abstract][Full Text] [Related]