BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8510438)

  • 1. [Pharmacodynamics and pharmacokinetics of the newer intravenous anesthetics (etomidate, propofol, S-ketamine)].
    Lauven PM; Schüttler J
    Klin Anasthesiol Intensivther; 1993; 44():3-10; discussion 108-13. PubMed ID: 8510438
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of thiopental, ketamine, etomidate, propofol and midazolam on the production of adrenomedullin and endothelin-1 in vascular smooth muscle cells.
    Hayashi Y; Minamino N; Isumi Y; Kangawa K; Kuro M; Matsuo H
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):325-31. PubMed ID: 10509742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct effects of intravenous anesthetics on pulmonary vascular resistance in the isolated rat lung.
    Rich GF; Roos CM; Anderson SM; Daugherty MO; Uncles DR
    Anesth Analg; 1994 May; 78(5):961-6. PubMed ID: 8160998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle.
    Gelissen HP; Epema AH; Henning RH; Krijnen HJ; Hennis PJ; den Hertog A
    Anesthesiology; 1996 Feb; 84(2):397-403. PubMed ID: 8602672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction agents for intubation of the trauma patient.
    Fields AM; Rosbolt MB; Cohn SM
    J Trauma; 2009 Oct; 67(4):867-9. PubMed ID: 19820598
    [No Abstract]   [Full Text] [Related]  

  • 6. Intravenous anesthetics inhibit human paraoxonase-1 (PON1) activity in vitro and in vivo.
    Alici HA; Ekinci D; Beydemir S
    Clin Biochem; 2008 Nov; 41(16-17):1384-90. PubMed ID: 18640108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of etomidate, ketamine, midazolam, propofol, and thiopental on function and metabolism of isolated hearts.
    Stowe DF; Bosnjak ZJ; Kampine JP
    Anesth Analg; 1992 Apr; 74(4):547-58. PubMed ID: 1554122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of intravenous anesthetics on the human radial artery used as a coronary artery bypass graft.
    Gursoy S; Berkan O; Bagcivan I; Kaya T; Yildirim K; Mimaroglu C
    J Cardiothorac Vasc Anesth; 2007 Feb; 21(1):41-4. PubMed ID: 17289478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct cardiac effects in isolated perfused rat hearts measured at increasing concentrations of morphine, alfentanil, fentanyl, ketamine, etomidate, thiopentone, midazolam and propofol.
    Süzer O; Süzer A; Aykaç Z; Ozüner Z
    Eur J Anaesthesiol; 1998 Jul; 15(4):480-5. PubMed ID: 9699107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of propofol-midazolam-ketamine co-induction on hemodynamic changes and catecholamine response.
    Abbasivash R; Aghdashi MM; Sinaei B; Kheradmand F
    J Clin Anesth; 2014 Dec; 26(8):628-33. PubMed ID: 25439407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Clinical indication of propofol for pediatric patients--pharmacokinetics of propofol and ketamine during and after total intravenous anesthesia with propofol, fentanyl and ketamine (PFK) in a neonate].
    Sakai T; Mi WD; Komoda Y; Kudo T; Kudo M; Matsuki A
    Masui; 1998 Mar; 47(3):314-7. PubMed ID: 9560543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of intravenous anesthetic agents on pregnant myometrium.
    Karsli B; Kaya T; Cetin A
    Pol J Pharmacol; 1999; 51(6):505-10. PubMed ID: 10817528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiopulmonary effects of propofol and a medetomidine-midazolam-ketamine combination in mallard ducks.
    Machin KL; Caulkett NA
    Am J Vet Res; 1998 May; 59(5):598-602. PubMed ID: 9582963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pharmacokinetics of propofol and ketamine during and after total intravenous anesthesia with propofol, fentanyl and ketamine for pediatric patients].
    Sakai T; Mi WD; Ebina T; Kudo T; Kudo M; Matsuki A
    Masui; 1998 Mar; 47(3):277-80. PubMed ID: 9560536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glucose transport and direct interactions with type 1 facilitative glucose transporter (GLUT-1) by etomidate, ketamine, and propofol: a comparison with barbiturates.
    Stephenson KN; Croxen RL; El-Barbary A; Fenstermacher JD; Haspel HC
    Biochem Pharmacol; 2000 Sep; 60(5):651-9. PubMed ID: 10927023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices.
    Xue QS; Yu BW; Wang ZJ; Chen HZ
    Acta Pharmacol Sin; 2004 Jan; 25(1):115-20. PubMed ID: 14704132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of etomidate, propofol, and midazolam on calcium and potassium channel currents in canine myocardial cells.
    Buljubasic N; Marijic J; Berczi V; Supan DF; Kampine JP; Bosnjak ZJ
    Anesthesiology; 1996 Nov; 85(5):1092-9. PubMed ID: 8916827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of thiopentone, etomidate, ketamine and midazolam on several bactericidal functions of polymorphonuclear leucocytes in vitro.
    Krumholz W; Demel C; Jung S; Meuthen G; Knecht J; Hempelmann G
    Eur J Anaesthesiol; 1995 Mar; 12(2):141-6. PubMed ID: 7781633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of ketamine and midazolam as co-induction agents with propofol for laryngeal mask insertion in children.
    Goel S; Bhardwaj N; Jain K
    Paediatr Anaesth; 2008 Jul; 18(7):628-34. PubMed ID: 18482245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Midazolam: pharmacologic and clinical aspects].
    Tamayo E; Muñoz R; Alvarez FJ
    Rev Esp Anestesiol Reanim; 1990; 37(2):81-94. PubMed ID: 2111037
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.