These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 8510764)
1. Extraneuronal uptake and O-methylation of 3H-adrenaline in the rabbit aorta. Martel F; Azevedo I; Osswald W Naunyn Schmiedebergs Arch Pharmacol; 1993 Apr; 347(4):363-70. PubMed ID: 8510764 [TBL] [Abstract][Full Text] [Related]
2. The effect of inhibitors of extraneuronal uptake on the distribution of 3H-(+/-)noradrenaline in nerve-free rabbit aortic strips. Eckert E; Henseling M; Trendelenburg U Naunyn Schmiedebergs Arch Pharmacol; 1976 May; 293(2):115-27. PubMed ID: 958502 [TBL] [Abstract][Full Text] [Related]
3. Extraneuronal uptake of noradrenaline in rabbit dental pulp: evidence of identity with uptake1. Marino V; de la Lande IS; Parker DA; Dally J; Wing S Naunyn Schmiedebergs Arch Pharmacol; 1992 Aug; 346(2):166-72. PubMed ID: 1448181 [TBL] [Abstract][Full Text] [Related]
4. Uptake of 3H-catecholamines by rat liver cells occurs mainly through a system which is distinct from uptake1 or uptake2. Martel F; Azevedo I; Osswald W Naunyn Schmiedebergs Arch Pharmacol; 1994 Aug; 350(2):130-5. PubMed ID: 7990969 [TBL] [Abstract][Full Text] [Related]
5. Kinetic constants for uptake and metabolism of 3H-(-)noradrenaline in rabbit aorta. Possible falsification of the constants by diffusion barriers within the vessel wall. Henseling M Naunyn Schmiedebergs Arch Pharmacol; 1983 Jun; 323(1):12-23. PubMed ID: 6877391 [TBL] [Abstract][Full Text] [Related]
6. Accumulation of 3H-adrenaline by rabbit aorta. Abrahamsen J; Nedergaard OA Blood Vessels; 1985; 22(1):32-46. PubMed ID: 3967097 [TBL] [Abstract][Full Text] [Related]
7. Evidence for uptake2-mediated O-methylation of noradrenaline in the human amnion FL cell-line. Marino V; de la Lande IS; Newlyn M; Parker DA Naunyn Schmiedebergs Arch Pharmacol; 1993 Apr; 347(4):371-8. PubMed ID: 8510765 [TBL] [Abstract][Full Text] [Related]
8. The distribution of 3H-(+/-)noradrenaline in rabbit aortic strips after inhibition of the noradrenaline-metabolizing enzymes. Henseling M; Eckert E; Trendelenburg U Naunyn Schmiedebergs Arch Pharmacol; 1976; 292(3):205-17. PubMed ID: 940598 [TBL] [Abstract][Full Text] [Related]
9. The role of extraneuronal amine transport systems for the removal of extracellular catecholamines in the rabbit. Friedgen B; Wölfel R; Russ H; Schömig E; Graefe KH Naunyn Schmiedebergs Arch Pharmacol; 1996; 354(3):275-86. PubMed ID: 8878057 [TBL] [Abstract][Full Text] [Related]
10. The uptake and metabolism of 3H-catecholamines in rat cerebral cortex slices. Trendelenburg U Naunyn Schmiedebergs Arch Pharmacol; 1989 Mar; 339(3):293-7. PubMed ID: 2725706 [TBL] [Abstract][Full Text] [Related]
11. The influence of oestrogen and oestrogen metabolites on the sensitivity of the isolated rabbit aorta to catecholamines. Barone S; Panek D; Bennett L; Stitzel RE; Head RJ Naunyn Schmiedebergs Arch Pharmacol; 1987 May; 335(5):513-20. PubMed ID: 3614387 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of the cocaine-sensitive accumulation and O-methylation of 3H-(-)-noradrenaline by rabbit endometrium. Kennedy JA; de la Lande IS Naunyn Schmiedebergs Arch Pharmacol; 1987 Aug; 336(2):148-54. PubMed ID: 3683593 [TBL] [Abstract][Full Text] [Related]
13. Uptake and metabolism of 3H-adrenaline and 3H-noradrenaline by isolated hepatocytes and liver slices of the rat. Martel F; Azevedo I; Osswald W Naunyn Schmiedebergs Arch Pharmacol; 1993 Nov; 348(5):450-7. PubMed ID: 8114943 [TBL] [Abstract][Full Text] [Related]
14. Accumulation of 3H-(-)noradrenaline in the rabbit aorta not related to uptake1 and uptake2, but sensitive to 3,4-dihydroxy-2-methylpropiophenone (U-0521) and oxytetracycline. Henseling M Naunyn Schmiedebergs Arch Pharmacol; 1983 Jun; 323(2):121-7. PubMed ID: 6888566 [TBL] [Abstract][Full Text] [Related]
15. Effect of inhibitors of neuronal and extraneuronal uptake on the accumulation and metabolism of 3H-l-norepinephrine in rabbit aorta. Levin JA; Wilson SE Blood Vessels; 1983; 20(5):234-44. PubMed ID: 6871474 [TBL] [Abstract][Full Text] [Related]
16. The kinetic characteristics of the extraneuronal Q-methylating system of the dog saphenous vein and the supersensitivity to catecholamines caused by its inhibition. Paiva MQ; Guimarães S Naunyn Schmiedebergs Arch Pharmacol; 1984 Aug; 327(1):48-55. PubMed ID: 6493350 [TBL] [Abstract][Full Text] [Related]
17. Vascular uptake of catecholamines in perfused lungs of the rat occurs by the same process as Uptake1 in noradrenergic neurones. Bryan-Lluka LJ; Westwood NN; O'Donnell SR Naunyn Schmiedebergs Arch Pharmacol; 1992 Mar; 345(3):319-26. PubMed ID: 1535692 [TBL] [Abstract][Full Text] [Related]
18. Accumulation and release of adrenaline, and the modulation by adrenaline of noradrenaline release from rabbit blood vessels in vitro. Abrahamsen J Pharmacol Toxicol; 1991; 69 Suppl 3():1-40. PubMed ID: 1762989 [TBL] [Abstract][Full Text] [Related]
19. The uptake and O-methylation of 3H-(+/-)-isoprenaline in rat cerebral cortex slices. Wilson VG; Grohmann M; Trendelenburg U Naunyn Schmiedebergs Arch Pharmacol; 1988 Apr; 337(4):397-405. PubMed ID: 3405315 [TBL] [Abstract][Full Text] [Related]
20. Amezinium and debrisoquine are substrates of uptake1 and potent inhibitors of monoamine oxidase in perfused lungs of rats. Bryan-Lluka LJ; Seers H; Sharpe I Naunyn Schmiedebergs Arch Pharmacol; 1996 Apr; 353(5):536-44. PubMed ID: 8740147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]