BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 8511586)

  • 41. Adenosylcobalamin-dependent ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Rapid, improved purification involving dGTP-based affinity chromatography plus biophysical characterization studies demonstrating enhanced, "crystallographic level" purity.
    Suto RK; Whalen MA; Finke RG
    Prep Biochem Biotechnol; 1999 Aug; 29(3):273-309. PubMed ID: 10431931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deoxyribonucleotide synthesis and the emergence of DNA in molecular evolution.
    Follmann H
    Naturwissenschaften; 1982 Feb; 69(2):75-81. PubMed ID: 7040989
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lactobacillus leichmannii and Escherichia coli ribonucleotide reductases: chemical and structural similarities.
    Lin AI; Ashley GW; Stubbe J
    Cold Spring Harb Symp Quant Biol; 1987; 52():587-96. PubMed ID: 3331345
    [No Abstract]   [Full Text] [Related]  

  • 44. Structural determinants and distribution of phosphate specificity in ribonucleotide reductases.
    Schell E; Nouairia G; Steiner E; Weber N; Lundin D; Loderer C
    J Biol Chem; 2021 Aug; 297(2):101008. PubMed ID: 34314684
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The prototypic class Ia ribonucleotide reductase from Escherichia coli: still surprising after all these years.
    Brignole EJ; Ando N; Zimanyi CM; Drennan CL
    Biochem Soc Trans; 2012 Jun; 40(3):523-30. PubMed ID: 22616862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation, characterization, and complete heteronuclear NMR resonance assignments of the glutaredoxin (C14S)-ribonucleotide reductase B1 737-761 (C754S) mixed disulfide.
    Berardi MJ; Pendred CL; Bushweller JH
    Biochemistry; 1998 Apr; 37(17):5849-57. PubMed ID: 9558318
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxygen-sensitive ribonucleoside triphosphate reductase is present in anaerobic Escherichia coli.
    Fontecave M; Eliasson R; Reichard P
    Proc Natl Acad Sci U S A; 1989 Apr; 86(7):2147-51. PubMed ID: 2648390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.
    Loderer C; Jonna VR; Crona M; Rozman Grinberg I; Sahlin M; Hofer A; Lundin D; Sjöberg BM
    J Biol Chem; 2017 Nov; 292(46):19044-19054. PubMed ID: 28972190
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ribonucleoside 5'-thiodiphosphates as substrates for Escherichia coli ribonucleotide reductase.
    von Döbeln U; Eckstein F
    Eur J Biochem; 1974 Apr; 43(2):215-20. PubMed ID: 4151721
    [No Abstract]   [Full Text] [Related]  

  • 50. Allosteric regulation of Trypanosoma brucei ribonucleotide reductase studied in vitro and in vivo.
    Hofer A; Ekanem JT; Thelander L
    J Biol Chem; 1998 Dec; 273(51):34098-104. PubMed ID: 9852067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation and drug resistance mechanisms of mammalian ribonucleotide reductase, and the significance to DNA synthesis.
    Wright JA; Chan AK; Choy BK; Hurta RA; McClarty GA; Tagger AY
    Biochem Cell Biol; 1990 Dec; 68(12):1364-71. PubMed ID: 2085432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of T4 phage aerobic ribonucleotide reductase. Simultaneous assay of the four activities.
    Hendricks SP; Mathews CK
    J Biol Chem; 1997 Jan; 272(5):2861-5. PubMed ID: 9006929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cobamides and ribonucleotide reduction. XII. The electron paramagnetic resonance spectrum of "active coenzyme B12".
    Orme-Johnson WH; Beinert H; Blakley RL
    J Biol Chem; 1974 Apr; 249(8):2338-43. PubMed ID: 4362676
    [No Abstract]   [Full Text] [Related]  

  • 54. Differential substrate properties of mammalian ribonucleotide reductase.
    Cory JG; Cory AH; Downes DL
    Adv Exp Med Biol; 1994; 370():631-5. PubMed ID: 7660984
    [No Abstract]   [Full Text] [Related]  

  • 55. Ribonucleotide reduction and the possible role of cobalamin in evolution.
    Dickman SR
    J Mol Evol; 1977 Dec; 10(3):251-60. PubMed ID: 599575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ribonucleotide reductases.
    Stubbe J
    Adv Enzymol Relat Areas Mol Biol; 1990; 63():349-419. PubMed ID: 2407066
    [No Abstract]   [Full Text] [Related]  

  • 57. The ribonucleotide reductase system of Lactococcus lactis. Characterization of an NrdEF enzyme and a new electron transport protein.
    Jordan A; Pontis E; Aslund F; Hellman U; Gibert I; Reichard P
    J Biol Chem; 1996 Apr; 271(15):8779-85. PubMed ID: 8621514
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A rapid and sensitive assay for quantifying the activity of both aerobic and anaerobic ribonucleotide reductases acting upon any or all substrates.
    Levitz TS; Andree GA; Jonnalagadda R; Dawson CD; Bjork RE; Drennan CL
    PLoS One; 2022; 17(6):e0269572. PubMed ID: 35675376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reduction of ribonucleotides.
    Thelander L; Reichard P
    Annu Rev Biochem; 1979; 48():133-58. PubMed ID: 382982
    [No Abstract]   [Full Text] [Related]  

  • 60. Generation of the glycyl radical of the anaerobic Escherichia coli ribonucleotide reductase requires a specific activating enzyme.
    Sun X; Eliasson R; Pontis E; Andersson J; Buist G; Sjöberg BM; Reichard P
    J Biol Chem; 1995 Feb; 270(6):2443-6. PubMed ID: 7852304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.