These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 8511586)

  • 61. Ribonucleotide reductases: radical enzymes with suicidal tendencies.
    Stubbe J; Booker S; Broderick J; Mao SS; Ator M; Harris G; Ashley G; Linn AE; Yu GX
    Nucleic Acids Symp Ser; 1993; (29):107. PubMed ID: 8247726
    [No Abstract]   [Full Text] [Related]  

  • 62. Substrate and effector binding to ribonucleoside triphosphate reductase of Lactobacillus leichmannii.
    Chen AK; Bhan A; Hopper S; Abrams R; Franzen JS
    Biochemistry; 1974 Feb; 13(4):654-61. PubMed ID: 4811061
    [No Abstract]   [Full Text] [Related]  

  • 63. The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site.
    Aurelius O; Johansson R; Bågenholm V; Lundin D; Tholander F; Balhuizen A; Beck T; Sahlin M; Sjöberg BM; Mulliez E; Logan DT
    PLoS One; 2015; 10(7):e0128199. PubMed ID: 26147435
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ribonucleotide reduction - horizontal transfer of a required function spans all three domains.
    Lundin D; Gribaldo S; Torrents E; Sjöberg BM; Poole AM
    BMC Evol Biol; 2010 Dec; 10():383. PubMed ID: 21143941
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The tyrosyl free radical in ribonucleotide reductase.
    Gräslund A; Sahlin M; Sjöberg BM
    Environ Health Perspect; 1985 Dec; 64():139-49. PubMed ID: 3007085
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Location of the redox-active thiols of ribonucleotide reductase: sequence similarity between the Escherichia coli and Lactobacillus leichmannii enzymes.
    Lin AN; Ashley GW; Stubbe J
    Biochemistry; 1987 Nov; 26(22):6905-9. PubMed ID: 3322391
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Ribonucleotide reductase in Propionibacterium shermani].
    Iordan EP; Vorob'eva LI; Gaĭtan VI
    Mikrobiologiia; 1975; 44(4):609-14. PubMed ID: 241003
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ribonucleotide reductase in the archaeon Pyrococcus furiosus: a critical enzyme in the evolution of DNA genomes?
    Riera J; Robb FT; Weiss R; Fontecave M
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):475-8. PubMed ID: 9012808
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Making DNA without iron - induction of a manganese-dependent ribonucleotide reductase in response to iron starvation.
    Andrews SC
    Mol Microbiol; 2011 Apr; 80(2):286-9. PubMed ID: 21371140
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The mechanism of the anaerobic Escherichia coli ribonucleotide reductase investigated with nuclear magnetic resonance spectroscopy.
    Eliasson R; Reichard P; Mulliez E; Ollagnier S; Fontecave M; Liepinsh E; Otting G
    Biochem Biophys Res Commun; 1995 Sep; 214(1):28-35. PubMed ID: 7669047
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The anaerobic (class III) ribonucleotide reductase from Lactococcus lactis. Catalytic properties and allosteric regulation of the pure enzyme system.
    Torrents E; Buist G; Liu A; Eliasson R; Kok J; Gibert I; Gräslund A; Reichard P
    J Biol Chem; 2000 Jan; 275(4):2463-71. PubMed ID: 10644700
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A New Type of YumC-Like Ferredoxin (Flavodoxin) Reductase Is Involved in Ribonucleotide Reduction.
    Chen J; Shen J; Solem C; Jensen PR
    mBio; 2015 Oct; 6(6):e01132-15. PubMed ID: 26507228
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synthesis and properties of adenosyl- and methylepicobalamin.
    Tkachuck RD; Grant ME; Hogenkamp HP
    Biochemistry; 1974 Jun; 13(12):2645-50. PubMed ID: 4598735
    [No Abstract]   [Full Text] [Related]  

  • 74. [Ribonucleotide reductase--transition enzymes from RNA metabolism to DNA metabolism].
    Kollarova M; Labudova O
    Biokhimiia; 1991 Dec; 56(12):2115-24. PubMed ID: 1725494
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Interactions of 2'-modified azido- and haloanalogs of deoxycytidine 5'-triphosphate with the anaerobic ribonucleotide reductase of Escherichia coli.
    Eliasson R; Pontis E; Eckstein F; Reichard P
    J Biol Chem; 1994 Oct; 269(42):26116-20. PubMed ID: 7929323
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structure of ribonucleotide reductase protein R1.
    Uhlin U; Eklund H
    Nature; 1994 Aug; 370(6490):533-9. PubMed ID: 8052308
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evidence for two different classes of redox-active cysteines in ribonucleotide reductase of Escherichia coli.
    Aberg A; Hahne S; Karlsson M; Larsson A; Ormö M; Ahgren A; Sjöberg BM
    J Biol Chem; 1989 Jul; 264(21):12249-52. PubMed ID: 2663852
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mass spectrometric determination of the radical scission site in the anaerobic ribonucleotide reductase of Escherichia coli.
    King DS; Reichard P
    Biochem Biophys Res Commun; 1995 Jan; 206(2):731-5. PubMed ID: 7826394
    [TBL] [Abstract][Full Text] [Related]  

  • 79. From deoxynucleotides to DNA synthesis.
    Reichard P
    Fed Proc; 1978 Jan; 37(1):9-14. PubMed ID: 201504
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The evolution of ribonucleotide reduction revisited.
    Stubbe J; Ge J; Yee CS
    Trends Biochem Sci; 2001 Feb; 26(2):93-9. PubMed ID: 11166566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.