These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8511780)

  • 61. Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species.
    Keller A; Mohamed A; Dröse S; Brandt U; Fleming I; Brandes RP
    Free Radic Res; 2004 Dec; 38(12):1257-67. PubMed ID: 15763950
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of oxidative stress, mitochondrial membrane potential, and calcium homeostasis in nickel subsulfide-induced human lymphocyte death in vitro.
    M'Bemba-Meka P; Lemieux N; Chakrabarti SK
    Sci Total Environ; 2006 Oct; 369(1-3):21-34. PubMed ID: 16780931
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin.
    Nackerdien Z; Kasprzak KS; Rao G; Halliwell B; Dizdaroglu M
    Cancer Res; 1991 Nov; 51(21):5837-42. PubMed ID: 1933852
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Methods to measure the reactivity of peroxynitrite-derived oxidants toward reduced fluoresceins and rhodamines.
    Wardman P
    Methods Enzymol; 2008; 441():261-82. PubMed ID: 18554539
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhancement of cytotoxicity of hydrogen peroxide by hyperthermia in chinese hamster ovary cells: role of antioxidant defenses.
    Lord-Fontaine S; Averill DA
    Arch Biochem Biophys; 1999 Mar; 363(2):283-95. PubMed ID: 10068450
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of nickel compounds on immunophenotype and natural killer cell function of normal human lymphocytes.
    Zeromski J; Jezewska E; Sikora J; Kasprzak KS
    Toxicology; 1995 Mar; 97(1-3):39-48. PubMed ID: 7716791
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Study of interactions between phenolic compounds and H2O2 or Cu(II) ions in B14 Chinese hamster cells.
    Labieniec M; Gabryelak T
    Cell Biol Int; 2006 Oct; 30(10):761-8. PubMed ID: 16820308
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fluorophotometric detection of intravitreal peroxides after panretinal laser photocoagulation.
    Taguchi H; Ogura Y; Takanashi T; Hashizoe M; Honda Y
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):358-63. PubMed ID: 9477994
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Generation of hydrogen peroxide in resting and activated platelets.
    Maresca M; Colao C; Leoncini G
    Cell Biochem Funct; 1992 Jun; 10(2):79-85. PubMed ID: 1628382
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of nickel(II) on DNA-protein binding, thymidine incorporation, and sedimentation pattern of chromatin fractions from intact mammalian cells.
    Patierno SR; Sugiyama M; Costa M
    J Biochem Toxicol; 1987; 2():13-23. PubMed ID: 3508470
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reactive nitrogen species block cell cycle re-entry through sustained production of hydrogen peroxide.
    Yuan Z; Schellekens H; Warner L; Janssen-Heininger Y; Burch P; Heintz NH
    Am J Respir Cell Mol Biol; 2003 Jun; 28(6):705-12. PubMed ID: 12600834
    [TBL] [Abstract][Full Text] [Related]  

  • 72. DNA strand breaks and poly (ADP-ribose) polymerase activation induced by crystalline nickel subsulfide in MRC-5 lung fibroblast cells.
    Zhuang ZX; Shen Y; Shen HM; Ng V; Ong CN
    Hum Exp Toxicol; 1996 Nov; 15(11):891-7. PubMed ID: 8938484
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Methylmercury-induced augmentation of oxidative metabolism in cerebellar neurons dissociated from the rats: its dependence on intracellular Ca2+.
    Oyama Y; Tomiyoshi F; Ueno S; Furukawa K; Chikahisa L
    Brain Res; 1994 Oct; 660(1):154-7. PubMed ID: 7827992
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The induction of DNA strand breakage by nickel compounds in cultured Chinese hamster ovary cells.
    Robison SH; Costa M
    Cancer Lett; 1982 Jan; 15(1):35-40. PubMed ID: 7059962
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optimal Use of 2',7'-Dichlorofluorescein Diacetate in Cultured Hepatocytes.
    Reiniers MJ; de Haan LR; Reeskamp LF; Broekgaarden M; Hoekstra R; van Golen RF; Heger M
    Methods Mol Biol; 2022; 2451():721-747. PubMed ID: 35505044
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis.
    Burkitt MJ; Wardman P
    Biochem Biophys Res Commun; 2001 Mar; 282(1):329-33. PubMed ID: 11264011
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Conformational changes and activity alterations induced by nickel ion in horseradish peroxidase.
    Tayefi-Nasrabadi H; Keyhani E; Keyhani J
    Biochimie; 2006 Sep; 88(9):1183-97. PubMed ID: 16697100
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biological availability of nickel arsenides: toxic effects of particulate Ni5As2.
    Gurley LR; Tobey RA; Valdez JG; Halleck MS; Barham SS
    Sci Total Environ; 1983 Jun; 28():415-32. PubMed ID: 6879161
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cytometric and electron microscopic studies of the direct interaction of divalent nickel with intact and chemically modified HuT-78 lymphoblasts.
    Malinin GI; Hornicek FJ; Lo HK; Malinin TI
    Cell Biol Toxicol; 1992; 8(1):27-41. PubMed ID: 1317242
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The regulation of ionic nickel uptake and cytotoxicity by specific amino acids and serum components.
    Abbracchio MP; Evans RM; Heck JD; Cantoni O; Costa M
    Biol Trace Elem Res; 1982 Dec; 4(4):289-301. PubMed ID: 24272136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.