These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 851189)

  • 1. Handling of angiotensin II and oxytocin by renal tubular segments perfused in vitro.
    Peterson DR; Oparil S; Flouret G; Carone FA
    Am J Physiol; 1977 Apr; 232(4):F319-24. PubMed ID: 851189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal tubular processing of small peptide hormones.
    Carone FA; Peterson DR; Flouret G
    J Lab Clin Med; 1982 Jul; 100(1):1-14. PubMed ID: 7045258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of labeled angiotensin II microinfused into individual nephrons in the rat.
    Pullman TN; Oparil S; Carone FA
    Am J Physiol; 1975 Mar; 228(3):747-51. PubMed ID: 234689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of constituent amino acids on tubular handling of microinfused angiotensin II.
    Pullman TN; Carone FA; Oparil S; Nakamura S
    Am J Physiol; 1978 Apr; 234(4):F325-31. PubMed ID: 645868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal tubular transport of gentamicin in the rat.
    Pastoriza-Munoz E; Bowman RL; Kaloyanides GJ
    Kidney Int; 1979 Oct; 16(4):440-50. PubMed ID: 548590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolated microperfused tubule model to evaluate contrast media transport in normal and occluded renal tubule segments.
    Irish JM; Bigongiari LR
    Invest Radiol; 1979; 14(4):330-3. PubMed ID: 489273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Handling of luteinizing hormone-releasing hormone by renal proximal tubular segments in vitro.
    Stetler-Stevenson MA; Flouret G; Peterson DR
    Am J Physiol; 1981 Aug; 241(2):F117-22. PubMed ID: 7023248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction.
    Bank N; Yarger WE; Aynedjian HS
    J Clin Invest; 1971 Feb; 50(2):294-302. PubMed ID: 5540167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tubular reabsorption of myo-inositol vs. that of D-glucose in rat kidney in vivo et situ.
    Silbernagl S; Völker K; Dantzler WH
    Am J Physiol Renal Physiol; 2003 Jun; 284(6):F1181-9. PubMed ID: 12736166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Distributions of peptidases in the metabolization of peptide hormones, particularly angiotensin II, along the isolated single nephron of rat (author's transl)].
    Sudo J
    Nihon Yakurigaku Zasshi; 1981 Jul; 78(1):27-44. PubMed ID: 7308897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by D-serine and maleic acid.
    Carone FA; Nakamura S; Goldman B
    Lab Invest; 1985 Jun; 52(6):605-10. PubMed ID: 3925238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contraluminal uptake of serine in the proximal nephron.
    Shimomura A; Carone FA; Peterson DR
    Biochim Biophys Acta; 1988 Mar; 939(1):52-6. PubMed ID: 3126816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal tubular transport and metabolism of organic cations by the rabbit.
    Besseghir K; Pearce LB; Rennick B
    Am J Physiol; 1981 Sep; 241(3):F308-14. PubMed ID: 6456673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early enhancement of fluid transport in rabbit proximal straight tubules after loss of contralateral renal excretory function.
    Tabei K; Levenson DJ; Brenner BM
    J Clin Invest; 1983 Sep; 72(3):871-81. PubMed ID: 6886008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial heterogeneity in the handling of albumin by the rabbit proximal tubule.
    Clapp WL; Park CH; Madsen KM; Tisher CC
    Lab Invest; 1988 May; 58(5):549-58. PubMed ID: 3367637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of graded solute diuresis on renal tubular sodium transport in the rat.
    Khuri RN; Strieder N; Wiederholt M; Giebisch G
    Am J Physiol; 1975 Apr; 228(4):1262-8. PubMed ID: 1130524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate transport by isolated rabbit cortical collecting tubule.
    Peraino RA; Suki WN
    Am J Physiol; 1980 May; 238(5):F358-62. PubMed ID: 7377347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise degradation of NT in pars convoluta and recta of rabbit proximal tubules: evidence of axial heterogeneity.
    Bjerke T; Nielsen S; Sheikh MI; Christensen EI
    Am J Physiol; 1993 Jan; 264(1 Pt 1):E45-53. PubMed ID: 8430787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Augmented bicarbonate reabsorption by both the proximal and distal nephron maintains chloride-deplete metabolic alkalosis in rats.
    Wesson DE
    J Clin Invest; 1989 Nov; 84(5):1460-9. PubMed ID: 2808701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional profile of the isolated uremic nephron. Role of compensatory hypertrophy in the control of fluid reabsorption by the proximal straight tubule.
    Fine LG; Trizna W; Bourgoignie JJ; Bricker NS
    J Clin Invest; 1978 Jun; 61(6):1508-18. PubMed ID: 659612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.