BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8512233)

  • 1. Evidence for independently regulated secretory pathways in the neurointermediate lobe of Xenopus laevis.
    van Strien FJ; Jenks BG; Roubos EW
    Ann N Y Acad Sci; 1993 May; 680():639-42. PubMed ID: 8512233
    [No Abstract]   [Full Text] [Related]  

  • 2. A slow and a fast secretory compartment of POMC-derived peptides in the neurointermediate lobe of the amphibian Xenopus laevis.
    Van Zoest ID; Leenders HJ; Jenks BG; Roubos EW
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1990; 96(1):199-203. PubMed ID: 1980877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particular processing of pro-opiomelanocortin in Xenopus laevis intermediate pituitary. Sequencing of alpha- and beta-melanocyte-stimulating hormones.
    Rouillé Y; Michel G; Chauvet MT; Chauvet J; Acher R
    FEBS Lett; 1989 Mar; 245(1-2):215-8. PubMed ID: 2564347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis.
    de Koning HP; Jenks BG; Scheenen WJ; Balm PH; Roubos EW
    Gen Comp Endocrinol; 1992 Sep; 87(3):394-401. PubMed ID: 1330808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides.
    Verburg-Van Kemenade BM; Jenks BG; Cruijsen PM; Dings A; Tonon MC; Vaudry H
    Peptides; 1987; 8(6):1093-100. PubMed ID: 2831518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pro-opiomelanocortin-derived peptides in the pig pituitary: alpha- and gamma 1-melanocyte-stimulating hormones and their glycine-extended forms.
    Fenger M
    Regul Pept; 1988 Apr; 20(4):345-57. PubMed ID: 2835797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for two different turnover pools of adrenocorticotropin, alpha-melanocyte-stimulating hormone, and endorphin-related peptides released by the frog pituitary neurointermediate lobe.
    Loh YP; Jenks BG
    Endocrinology; 1981 Jul; 109(1):54-61. PubMed ID: 6263594
    [No Abstract]   [Full Text] [Related]  

  • 8. An NPY-like peptide may function as MSH-release inhibiting factor in Xenopus laevis.
    Verburg-van Kemenade BM; Jenks BG; Danger JM; Vaudry H; Pelletier G; Saint-Pierre S
    Peptides; 1987; 8(1):61-7. PubMed ID: 2883634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary.
    Dotman CH; Maia A; Jenks BG; Roubos EW
    Neuroendocrinology; 1997 Aug; 66(2):106-13. PubMed ID: 9263207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of catecholamines and background color on the in vitro incorporation of labeled amino acids into the neurointermediate lobe of the pituitary in Xenopus laevis.
    Thornton VF
    Gen Comp Endocrinol; 1974 Feb; 22(2):250-4. PubMed ID: 4815165
    [No Abstract]   [Full Text] [Related]  

  • 11. In vivo biosynthesis of melanotropins and related peptides in the pars intermedia of Xenopus laevis.
    Martens GJ; Soeterik F; Jenks BG; van Overbeeke AP
    Gen Comp Endocrinol; 1983 Jan; 49(1):73-80. PubMed ID: 6298059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of pairs of peptides related to melanotropin, corticotropin and endorphin in the pars intermedia of the amphibian pituitary gland.
    Martens GJ; Jenks BG; Van Overbeeke AP
    Eur J Biochem; 1982 Feb; 122(1):1-10. PubMed ID: 6277629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of pro-opiomelanocortin-related peptides in the neurointermediate lobe of the pituitary gland of the rainbow trout (Salmo gairdneri).
    Rodrigues KT; Jenks BG; Sumpter JP
    J Endocrinol; 1983 Aug; 98(2):271-82. PubMed ID: 6875434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of a gamma 3-melanotropin-like peptide in the pars intermedia of the amphibian pituitary gland.
    Martens GJ; Jenks BG; Van Overbeeke AP
    Eur J Biochem; 1982 Aug; 126(1):23-8. PubMed ID: 7128584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of melanotrope cell activity in Xenopus laevis.
    Roubos EW; Martens GJ; Jenks BG
    Ann N Y Acad Sci; 1993 May; 680():130-4. PubMed ID: 8512213
    [No Abstract]   [Full Text] [Related]  

  • 16. Microsuperfusion of neurointermediate lobes of Xenopus laevis: concomitant and coordinately controlled release of newly synthesized peptides.
    Martens GJ; Jenks BG; van Overbeeke AP
    Comp Biochem Physiol C Comp Pharmacol; 1981; 69C(1):75-82. PubMed ID: 6113093
    [No Abstract]   [Full Text] [Related]  

  • 17. Intracellular acetylation of desacetyl alpha MSH in the Xenopus laevis neurointermediate lobe.
    Goldman ME; Loh YP
    Peptides; 1984; 5(6):1129-34. PubMed ID: 6099561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity and ontogeny of melanotrope D2A dopamine receptor mRNA and isoform protein expression.
    Chronwall BM; Dickerson DS; Sibley DR; Gary KA
    Ann N Y Acad Sci; 1993 May; 680():478-80. PubMed ID: 8512223
    [No Abstract]   [Full Text] [Related]  

  • 19. N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process.
    Verburg-van Kemenade BM; Jenks BG; Smits RJ
    Neuroendocrinology; 1987 Oct; 46(4):289-96. PubMed ID: 2823159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cyclic-AMP synthesis in amphibian melanotrope cells through catecholamine and GABA receptors.
    Verburg-van Kemenade BM; Jenks BG; Houben AJ
    Life Sci; 1987 May; 40(19):1859-67. PubMed ID: 3033416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.