These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 8512326)

  • 21. Factors affecting the reactivation of the mitochondrial adenosine 5'-triphosphatase and the release of ATPase inhibitor protein during and following the reenergization of mitochondria from ischemic cardiac muscle.
    Rouslin W; Broge CW
    Arch Biochem Biophys; 1989 Dec; 275(2):385-94. PubMed ID: 2531991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactive to active transitions of the mitochondrial ATPase complex as controlled by the ATPase inhibitor.
    Gómez-Puyou A; de Gómez-Puyou MT; Ernster L
    Biochim Biophys Acta; 1979 Aug; 547(2):252-7. PubMed ID: 157162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Esterase activity of the mitochondria oligomycin-sensitive ATPase complex].
    Iaguzhinskiĭ LS; Gudz' TI; Verkhovskiĭ AB
    Biokhimiia; 1978 Nov; 43(11):2058-63. PubMed ID: 153769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Independent inhibitions of mitochondrial complex V by the adenosinetriphosphatase inhibitor protein and active-site modifiers.
    Galante YM; Wong SY; Hatefi Y
    Biochemistry; 1982 Feb; 21(4):680-7. PubMed ID: 6462171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system].
    Novgorodov SA; Dragunova SF; Iaguzhinskiĭ LS
    Biofizika; 1982; 27(2):244-8. PubMed ID: 6462181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protonic inhibition of the mitochondrial adenosine 5'-triphosphatase in ischemic cardiac muscle. Reversible binding of the ATPase inhibitor protein to the mitochondrial ATPase during ischemia.
    Rouslin W; Pullman ME
    J Mol Cell Cardiol; 1987 Jul; 19(7):661-8. PubMed ID: 2960823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoaffinity labeling of mitochondrial adenosine triphosphatase by an azido derivative of the natural adenosine triphosphate inhibitor.
    Klein G; Satre M; Dianoux AC; Vignais PV
    Biochemistry; 1981 Mar; 20(5):1339-44. PubMed ID: 6452897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of bepridil on heart mitochondrial membrane and the isolated rat heart preparation.
    Fuchs J; Mainka L; Reifart N; Zimmer G
    Arzneimittelforschung; 1986 Feb; 36(2):209-12. PubMed ID: 2938592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH dependent conformational changes modulate functional activity of the mitochondrial ATPase inhibitor protein.
    Sah JF; Kumar C; Mohanty P
    Biochem Biophys Res Commun; 1993 Aug; 194(3):1521-8. PubMed ID: 8352810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase.
    Papa S; Zanotti F; Cocco T; Perrucci C; Candita C; Minuto M
    Eur J Biochem; 1996 Sep; 240(2):461-7. PubMed ID: 8841413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase.
    Solaini G; Tadolini B
    Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation.
    Brennan JP; Southworth R; Medina RA; Davidson SM; Duchen MR; Shattock MJ
    Cardiovasc Res; 2006 Nov; 72(2):313-21. PubMed ID: 16950237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of tricyclic antidepressant drugs on energy-linked reactions in mitochondria.
    Weinbach EC; Costa JL; Nelson BD; Claggett CE; Hundal T; Bradley D; Morris SJ
    Biochem Pharmacol; 1986 May; 35(9):1445-51. PubMed ID: 2939836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of the mitochondrial ATPase in situ in cardiac muscle: role of the inhibitor subunit.
    Rouslin W
    J Bioenerg Biomembr; 1991 Dec; 23(6):873-88. PubMed ID: 1838111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial ATPase of Zajdela hepatoma. V. Mitochondria of Zajdela hepatoma contain membrane sectors of ATPase complex unassociated with F1.
    Kuzela S; Kolarov J; Krempaský V; Luciaková K; Ujházy V
    Neoplasma; 1978; 25(6):745-9. PubMed ID: 88020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regucalcin increases Ca2+-ATPase activity in the heart mitochondria of normal and regucalcin transgenic rats.
    Akhter T; Sawada N; Yamaguchi M
    Int J Mol Med; 2006 Jul; 18(1):171-6. PubMed ID: 16786169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of mitochondrial ATPase by Hg++ ions.
    Stará H; Drahota Z
    Physiol Bohemoslov; 1978; 27(3):193-8. PubMed ID: 150609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles.
    Klein G; Vignais PV
    J Bioenerg Biomembr; 1983 Dec; 15(6):347-62. PubMed ID: 18251431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insight into the bind-lock mechanism of the yeast mitochondrial ATP synthase inhibitory peptide.
    Corvest V; Sigalat C; Haraux F
    Biochemistry; 2007 Jul; 46(29):8680-8. PubMed ID: 17595113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of naturally occurring polyols and urea on mitochondrial F0F1ATPase.
    Lemos AP; Peres-Sampaio CE; Guimarães-Motta H; Silva JL; Meyer-Fernandes JR
    Z Naturforsch C J Biosci; 2000; 55(5-6):392-8. PubMed ID: 10928550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.