BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 8512329)

  • 1. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. II. Structural studies using infrared spectroscopy.
    Prestrelski SJ; Arakawa T; Carpenter JF
    Arch Biochem Biophys; 1993 Jun; 303(2):465-73. PubMed ID: 8512329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. I. Enzyme activity and calorimetric studies.
    Carpenter JF; Prestrelski SJ; Arakawa T
    Arch Biochem Biophys; 1993 Jun; 303(2):456-64. PubMed ID: 8512328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying.
    Anchordoquy TJ; Izutsu KI; Randolph TW; Carpenter JF
    Arch Biochem Biophys; 2001 Jun; 390(1):35-41. PubMed ID: 11368512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state.
    Anchordoquy TJ; Carpenter JF
    Arch Biochem Biophys; 1996 Aug; 332(2):231-8. PubMed ID: 8806730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational and bioactivity analysis of insulin: freeze-drying TBA/water co-solvent system in the presence of surfactant and sugar.
    Zhang Y; Deng Y; Wang X; Xu J; Li Z
    Int J Pharm; 2009 Apr; 371(1-2):71-81. PubMed ID: 19136051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of secondary structure on the activity of enzymes suspended in organic solvents.
    Dong A; Meyer JD; Kendrick BS; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1996 Oct; 334(2):406-14. PubMed ID: 8900418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid optimization of protein freeze-drying formulations using ultra scale-down and factorial design of experiment in microplates.
    Grant Y; Matejtschuk P; Dalby PA
    Biotechnol Bioeng; 2009 Dec; 104(5):957-64. PubMed ID: 19530082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trehalose and hyaluronic acid coordinately stabilized freeze-dried pancreatic kininogenase.
    Zhang Y; Ji B; Ling P; Zhang T
    Eur J Pharm Biopharm; 2007 Jan; 65(1):18-25. PubMed ID: 16950608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers.
    Prestrelski SJ; Tedeschi N; Arakawa T; Carpenter JF
    Biophys J; 1993 Aug; 65(2):661-71. PubMed ID: 7693001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of protein conformational stability and integrity using calorimetry and FT-Raman spectroscopy correlated with enzymatic activity.
    Elkordy AA; Forbes RT; Barry BW
    Eur J Pharm Sci; 2008 Feb; 33(2):177-90. PubMed ID: 18207710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application and mechanisms of polyethylene glycol 8000 on stabilizing lactate dehydrogenase during lyophilization.
    Mi Y; Wood G
    PDA J Pharm Sci Technol; 2004; 58(4):192-202. PubMed ID: 15368989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-drying of proteins: some emerging concerns.
    Roy I; Gupta MN
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):165-77. PubMed ID: 15032737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation.
    Chang BS; Beauvais RM; Dong A; Carpenter JF
    Arch Biochem Biophys; 1996 Jul; 331(2):249-58. PubMed ID: 8660705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of stabilizing additives with proteins during freeze-thawing and freeze-drying.
    Carpenter JF; Arakawa T; Crowe JH
    Dev Biol Stand; 1992; 74():225-38; discussion 238-9. PubMed ID: 1592173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between conformational stability and lyophilization-induced structural changes in chymotrypsin.
    Carrasquillo KG; Sanchez C; Griebenow K
    Biotechnol Appl Biochem; 2000 Feb; 31(1):41-53. PubMed ID: 10669401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared microscopy for in situ measurement of protein secondary structure during freezing and freeze-drying.
    Schwegman JJ; Carpenter JF; Nail SL
    J Pharm Sci; 2007 Jan; 96(1):179-95. PubMed ID: 17031845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices.
    Conrad PB; Miller DP; Cielenski PR; de Pablo JJ
    Cryobiology; 2000 Aug; 41(1):17-24. PubMed ID: 11017757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume recovery, surface properties and membrane integrity of Lactobacillus delbrueckii subsp. bulgaricus dehydrated in the presence of trehalose or sucrose.
    Tymczyszyn EE; del Rosario Díaz M; Gómez-Zavaglia A; Disalvo EA
    J Appl Microbiol; 2007 Dec; 103(6):2410-9. PubMed ID: 18045426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Carpenter JF
    J Pharm Sci; 2001 Sep; 90(9):1255-68. PubMed ID: 11745778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.