These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8512935)

  • 21. Computational method for the design of enzymes with altered substrate specificity.
    Wilson C; Mace JE; Agard DA
    J Mol Biol; 1991 Jul; 220(2):495-506. PubMed ID: 1856870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolating substrates for an engineered alpha-lytic protease by phage display.
    Lien S; Francis GL; Graham LD; Wallace JC
    J Protein Chem; 2003 Feb; 22(2):155-66. PubMed ID: 12760420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic and structural characterization of mutations of glycine 216 in alpha-lytic protease: a new target for engineering substrate specificity.
    Mace JE; Agard DA
    J Mol Biol; 1995 Dec; 254(4):720-36. PubMed ID: 7500345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linkers for improved cleavage of fusion proteins with an engineered alpha-lytic protease.
    Lien S; Milner SJ; Graham LD; Wallace JC; Francis GL
    Biotechnol Bioeng; 2001 Aug; 74(4):335-43. PubMed ID: 11410858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redesigning the substrate specificity of the hepatitis C virus NS3 protease.
    Failla CM; Pizzi E; De Francesco R; Tramontano A
    Fold Des; 1996; 1(1):35-42. PubMed ID: 9079362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combinatorial strategies for the discovery of novel protease specificities.
    Lien S; Francis GL; Graham LD
    Comb Chem High Throughput Screen; 1999 Apr; 2(2):73-90. PubMed ID: 10420977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate specificity of the Escherichia coli outer membrane protease OmpT.
    McCarter JD; Stephens D; Shoemaker K; Rosenberg S; Kirsch JF; Georgiou G
    J Bacteriol; 2004 Sep; 186(17):5919-25. PubMed ID: 15317797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target recognition by EcoKI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity.
    O'Neill M; Powell LM; Murray NE
    J Mol Biol; 2001 Mar; 307(3):951-63. PubMed ID: 11273713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutational replacements of the amino acid residues forming the hydrophobic S4 binding pocket of subtilisin 309 from Bacillus lentus.
    Sørensen SB; Bech LM; Meldal M; Breddam K
    Biochemistry; 1993 Sep; 32(35):8994-9. PubMed ID: 8369272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designing subtilisin BPN' to cleave substrates containing dibasic residues.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis for broad specificity in alpha-lytic protease mutants.
    Bone R; Fujishige A; Kettner CA; Agard DA
    Biochemistry; 1991 Oct; 30(43):10388-98. PubMed ID: 1931963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes.
    Murphy ME; Moult J; Bleackley RC; Gershenfeld H; Weissman IL; James MN
    Proteins; 1988; 4(3):190-204. PubMed ID: 3237717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specificity of the medaka enteropeptidase serine protease and its usefulness as a biotechnological tool for fusion-protein cleavage.
    Ogiwara K; Takahashi T
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7021-6. PubMed ID: 17438297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate specificity of the NS3 serine proteinase of hepatitis C virus as determined by mutagenesis at the NS3/NS4A junction.
    Leinbach SS; Bhat RA; Xia SM; Hum WT; Stauffer B; Davis AR; Hung PP; Mizutani S
    Virology; 1994 Oct; 204(1):163-9. PubMed ID: 8091650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates.
    Seah SY; Britton KL; Rice DW; Asano Y; Engel PC
    Biochemistry; 2002 Sep; 41(38):11390-7. PubMed ID: 12234181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.
    Pizzi E; Tramontano A; Tomei L; La Monica N; Failla C; Sardana M; Wood T; De Francesco R
    Proc Natl Acad Sci U S A; 1994 Feb; 91(3):888-92. PubMed ID: 8302861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase.
    Patricelli MP; Cravatt BF
    Biochemistry; 2001 May; 40(20):6107-15. PubMed ID: 11352748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manipulation of the active site loops of D-hydantoinase, a (beta/alpha)8-barrel protein, for modulation of the substrate specificity.
    Cheon YH; Park HS; Kim JH; Kim Y; Kim HS
    Biochemistry; 2004 Jun; 43(23):7413-20. PubMed ID: 15182184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.