These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 8513312)

  • 41. Distribution pattern of sudanophilic plaques in the descending thoracic and proximal abdominal human aorta.
    Svindland A; Walløe L
    Atherosclerosis; 1985 Nov; 57(2-3):219-24. PubMed ID: 3841284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variations in human aortic fatty streaks among geographic locations.
    Restrepo C; Tracy RE
    Atherosclerosis; 1975; 21(2):179-93. PubMed ID: 1169070
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial dispersion of stainable lipid in frozen sections of human aorta.
    Tracy RE; Kissling GE; Gandia M; Reynolds C
    Virchows Arch A Pathol Anat Histopathol; 1989; 415(1):39-49. PubMed ID: 2472032
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on the distribution of lipids within fibrous plaques.
    Stout LC
    Atherosclerosis; 1976; 23(3):443-50. PubMed ID: 1267862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gross aortic sudanophilia and hemosiderin deposition. A study on infants, children, and young adults.
    Schwartz CJ; Ardie NG; Carter RF; Paterson JC
    Arch Pathol; 1967 Apr; 83(4):325-32. PubMed ID: 4164543
    [No Abstract]   [Full Text] [Related]  

  • 46. A morphological study of atherosclerotic lesions occurring at the root of aorta.
    Tyagi SP; Dadgar SK; Hameed S
    Jpn Circ J; 1979 Apr; 43(4):277-84. PubMed ID: 459074
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on the human aortic bifurcation. Part 2. Predilection sites of early lipid deposits in relation to preformed arterial structures.
    Meyer WW; Kauffman SL; Hardy-Stashin J
    Atherosclerosis; 1980 Nov; 37(3):389-97. PubMed ID: 7458984
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Respiration of the avian aorta in relation to spontaneous atherosclerosis.
    Weiss HS; Watson NJ; Calhoon TB
    Comp Biochem Physiol A Comp Physiol; 1971 Mar; 38(3):675-85. PubMed ID: 4396834
    [No Abstract]   [Full Text] [Related]  

  • 49. Rhythmic structures and atherosclerosis in the aorta.
    Vikhert AM; Sternby NH; Livshits AM; Dusková J
    Atherosclerosis; 1994 Apr; 106(2):129-37. PubMed ID: 8060374
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of "wave line" (Doerr; Wellenlinie) of aorta in atherosclerosis.
    Tanimura A; Cho T; Saito Y; Nakashima T
    Angiology; 1986 Apr; 37(4):272-80. PubMed ID: 3717692
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Cellular and molecular mechanisms of arteriosclerosis].
    Chazov EI
    Ter Arkh; 1982; 54(11):3-8. PubMed ID: 7157168
    [No Abstract]   [Full Text] [Related]  

  • 52. Distribution of atherosclerosis in human descending thoracic aorta. A morphometric study.
    Svendsen E; Eide TJ
    Acta Pathol Microbiol Scand A; 1980 Mar; 88(2):97-101. PubMed ID: 7368939
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Topographic study of sudanophilic lesions in cholesterol-fed minipigs by image analysis.
    Cornhill JF; Barrett WA; Herderick EE; Mahley RW; Fry DL
    Arteriosclerosis; 1985; 5(5):415-26. PubMed ID: 2412537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Basic varieties of the fibrous plaques of the aortic intima].
    Zhdanov VS; Vikhert AM
    Kardiologiia; 1973 Dec; 13(12):42-7. PubMed ID: 4778836
    [No Abstract]   [Full Text] [Related]  

  • 55. [Reverse development of experimental aortic atherosclerosis in guinea pigs].
    Tararak EM
    Biull Eksp Biol Med; 1969 Feb; 67(2):118-21. PubMed ID: 5821417
    [No Abstract]   [Full Text] [Related]  

  • 56. Aortic rhythmic wrinkling in youth: the PDAY study.
    Troxclair DA; Schmidt BA; Herderick EE; Boudreau DA; Malcom GT; Strong JP
    Virchows Arch; 2006 Dec; 449(6):707-15. PubMed ID: 17072642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequestration hypothesis of atherosclerosis.
    Tracy RE; Kissling GE; Malcom GT; Devaney K
    Virchows Arch A Pathol Anat Histopathol; 1987; 411(5):425-34. PubMed ID: 3116757
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preliminary morphometric data on lipid lesion distribution in aortas of young people (WHO-ISFC PBDAY study).
    Weber G; Bianciardi G; Simoes C; Attino V; Tarabocchia B; Tanganelli P
    Clin Exp Hypertens; 1993; 15 Suppl 1():31-8. PubMed ID: 8513312
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distribution of lipid and raised lesions in aortas of young people of different geographic origins (WHO-ISFC PBDAY Study). World Health Organization-International Society and Federation of Cardiology. Pathobiological Determinants of Atherosclerosis in Youth.
    Tanganelli P; Bianciardi G; Simoes C; Attino V; Tarabochia B; Weber G
    Arterioscler Thromb; 1993 Nov; 13(11):1700-10. PubMed ID: 8218111
    [TBL] [Abstract][Full Text] [Related]  

  • 60. World Health Organization (WHO) and the World Heart Federation (WHF) Pathobiological Determinants of Atherosclerosis in Youth (PBDAY) Study. Lipid and raised lesion distribution in the right coronary artery of young people.
    Simoes C; Bianciardi G; Toti P; Weber G; Tanganelli P
    Nutr Metab Cardiovasc Dis; 1999 Dec; 9(6):277-83. PubMed ID: 10765519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.