These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8514147)

  • 81. The oli1 gene and flanking sequences in mitochondrial DNA of Saccharomyces cerevisiae: the complete nucleotide sequence of a 1.35 kilobase petite mitochondrial DNA genome covering the oli1 gene.
    Ooi BG; Nagley P
    Curr Genet; 1986; 10(10):713-23. PubMed ID: 3329032
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Complex terminal structure of a linear mitochondrial plasmid from Physarum polycephalum: three terminal inverted repeats and an ORF encoding DNA polymerase.
    Takano H; Kawano S; Kuroiwa T
    Curr Genet; 1994 Mar; 25(3):252-7. PubMed ID: 7923412
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Transposon Tn5 excision in yeast: influence of DNA polymerases alpha, delta, and epsilon and repair genes.
    Gordenin DA; Malkova AL; Peterzen A; Kulikov VN; Pavlov YI; Perkins E; Resnick MA
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3785-9. PubMed ID: 1315039
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A mutation of the yeast gene encoding PCNA destabilizes both microsatellite and minisatellite DNA sequences.
    Kokoska RJ; Stefanovic L; Buermeyer AB; Liskay RM; Petes TD
    Genetics; 1999 Feb; 151(2):511-9. PubMed ID: 9927447
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Stability of YACs containing ribosomal or RCP/GCP locus DNA in wild-type S. cerevisiae and RAD mutant strains.
    Kohno K; Wada M; Schlessinger D; D'Urso M; Tanabe S; Oshiro T; Imamoto F
    DNA Res; 1994; 1(4):191-9. PubMed ID: 8535977
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins.
    Voineagu I; Narayanan V; Lobachev KS; Mirkin SM
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9936-41. PubMed ID: 18632578
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Characterization of the role played by the RAD59 gene of Saccharomyces cerevisiae in ectopic recombination.
    Jablonovich Z; Liefshitz B; Steinlauf R; Kupiec M
    Curr Genet; 1999 Aug; 36(1-2):13-20. PubMed ID: 10447590
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Gene conversion associated with site-specific recombination in yeast plasmid pSR1.
    Matsuzaki H; Araki H; Oshima Y
    Mol Cell Biol; 1988 Feb; 8(2):955-62. PubMed ID: 3280974
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae.
    Bai Y; Symington LS
    Genes Dev; 1996 Aug; 10(16):2025-37. PubMed ID: 8769646
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Size of gene specific inverted repeat--dependent gene deletion In Saccharomyces cerevisiae.
    Lim C; Luhe AL; Jingying CT; Balagurunathan B; Wu J; Zhao H
    PLoS One; 2013; 8(8):e72137. PubMed ID: 23977230
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Instability of long inverted repeats within mouse transgenes.
    Collick A; Drew J; Penberth J; Bois P; Luckett J; Scaerou F; Jeffreys A; Reik W
    EMBO J; 1996 Mar; 15(5):1163-71. PubMed ID: 8605887
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Requirement of the yeast RTH1 5' to 3' exonuclease for the stability of simple repetitive DNA.
    Johnson RE; Kovvali GK; Prakash L; Prakash S
    Science; 1995 Jul; 269(5221):238-40. PubMed ID: 7618086
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Plasmid recombination in a rad52 mutant of Saccharomyces cerevisiae.
    Dornfeld KJ; Livingston DM
    Genetics; 1992 Jun; 131(2):261-76. PubMed ID: 1644271
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Genetic Screens to Study GAA/TTC and Inverted Repeat Instability in Saccharomyces cerevisiae.
    Guo W; Lobachev KS
    Methods Mol Biol; 2020; 2056():103-112. PubMed ID: 31586343
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Chromosomal translocations generated by high-frequency meiotic recombination between repeated yeast genes.
    Jinks-Robertson S; Petes TD
    Genetics; 1986 Nov; 114(3):731-52. PubMed ID: 3539696
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair.
    Chen C; Umezu K; Kolodner RD
    Mol Cell; 1998 Jul; 2(1):9-22. PubMed ID: 9702187
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The exonuclease activity of the yeast mitochondrial DNA polymerase γ suppresses mitochondrial DNA deletions between short direct repeats in Saccharomyces cerevisiae.
    Stumpf JD; Copeland WC
    Genetics; 2013 Jun; 194(2):519-22. PubMed ID: 23589460
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Reduced levels of DNA polymerase delta induce chromosome fragile site instability in yeast.
    Lemoine FJ; Degtyareva NP; Kokoska RJ; Petes TD
    Mol Cell Biol; 2008 Sep; 28(17):5359-68. PubMed ID: 18591249
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae.
    Young ET; Sloan JS; Van Riper K
    Genetics; 2000 Mar; 154(3):1053-68. PubMed ID: 10757753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.