BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 851425)

  • 1. Intramolecular ionic interactions of lysine residues and a possible folding domain in fructose diphosphate aldolase.
    Lambert JM; Perham RN; Coggins JR
    Biochem J; 1977 Jan; 161(1):63-71. PubMed ID: 851425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding domains and intramolecular ionic interactions of lysine residues in glyceraldehyde 3-phosphate dehydrogenase.
    Lambert JM; Perham RN
    Biochem J; 1977 Jan; 161(1):49-62. PubMed ID: 851424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended amino acid sequences around the active-site lysine residue of class-I fructose 1,6-bisphosphate aldolases from rabbit muscle, sturgeon muscle, trout muscle and ox liver.
    Benfield PA; Forcina BG; Gibbons I; Perham RN
    Biochem J; 1979 Nov; 183(2):429-44. PubMed ID: 534504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of pyridoxal 5'-phosphate on lysine residues in rabbit and sturgeon muscle aldolases.
    Marie AL
    Can J Biochem; 1976 Aug; 54(8):729-35. PubMed ID: 953852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of "buried" lysine residues in two variants of chloramphenicol acetyltransferase specified by R-factors.
    Packman LC; Shaw WV
    Biochem J; 1981 Feb; 193(2):525-39. PubMed ID: 6796049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reactivity of thiol groups and the subunit structure of aldolase.
    Anderson PJ; Perham RN
    Biochem J; 1970 Apr; 117(2):291-8. PubMed ID: 5420037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of fructose bisphosphate aldolase from Trypanosoma brucei compared to aldolase from rabbit muscle and Staphylococcus aureus.
    Callens M; Opperdoes FR
    Mol Biochem Parasitol; 1991 Jul; 47(1):11-7. PubMed ID: 1857380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and properties of the native form of rabbit liver aldolase. Evidence for proteolytic modification after tissue extraction.
    Chappel A; Hoogenraad NJ; Holmes RS
    Biochem J; 1978 Nov; 175(2):377-82. PubMed ID: 743202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reactivity and function of cysteine residues in rabbit liver aldolase B.
    Heyduk T; Moniewska A; Kochman M
    Biochim Biophys Acta; 1986 Dec; 874(3):337-46. PubMed ID: 3790575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution.
    Sygusch J; Beaudry D; Allaire M
    Proc Natl Acad Sci U S A; 1987 Nov; 84(22):7846-50. PubMed ID: 3479768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge stabilization and entropy reduction of central lysine residues in fructose-bisphosphate aldolase.
    St-Jean M; Blonski C; Sygusch J
    Biochemistry; 2009 Jun; 48(21):4528-37. PubMed ID: 19354220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific, limited tryptic modification of wheat-germ fructose-bisphosphate aldolase subunits: destruction of catalytic activity but not of ability to establish precise subunit-subunit recognition.
    Swain MS; Lebherz HG
    Biochim Biophys Acta; 1986 Jan; 869(2):185-91. PubMed ID: 3942758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the lysine residue modified during the activation of acetimidylation of horse liver alcohol dehydrogenase.
    Dworschack R; Tarr G; Plapp BV
    Biochemistry; 1975 Jan; 14(2):200-3. PubMed ID: 1168062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A selective reaction of fructose bisphosphate aldolase with fluorescein isothiocyanate in chicken muscle extracts.
    Gehring AG; Ezzell JL; Lebherz HG
    J Mol Recognit; 2008; 21(3):137-47. PubMed ID: 18438970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical-modification rescue assessed by mass spectrometry demonstrates that gamma-thia-lysine yields the same activity as lysine in aldolase.
    Hopkins CE; O'Connor PB; Allen KN; Costello CE; Tolan DR
    Protein Sci; 2002 Jul; 11(7):1591-9. PubMed ID: 12070312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose-1,6-bisphosphate aldolase from Drosophila melanogaster: primary structure analysis, secondary structure prediction, and comparison with vertebrate aldolases.
    Malek AA; Hy M; Honegger A; Rose K; Brenner-Holzach O
    Arch Biochem Biophys; 1988 Oct; 266(1):10-31. PubMed ID: 3140728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of mammalian fructose diphosphate aldolases by COOH terminus autophosphorylation.
    Sygusch J; Beaudry D; Allaire M
    Arch Biochem Biophys; 1990 Dec; 283(2):227-33. PubMed ID: 2275541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.
    Qamar S; Marsh K; Berry A
    Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxy-terminus recruitment induced by substrate binding in eukaryotic fructose bis-phosphate aldolases.
    Lafrance-Vanasse J; Sygusch J
    Biochemistry; 2007 Aug; 46(33):9533-40. PubMed ID: 17661446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paracatalytic modification of aldolase: a side reaction of the catalytic cycle resulting in irreversible blocking of two active-site lysyl residues.
    Lubini DG; Christen P
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2527-31. PubMed ID: 288042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.