BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8514745)

  • 1. Covalent modification with concomitant inactivation of the cAMP-dependent protein kinase by affinity labels containing only L-amino acids.
    Salerno A; Lawrence DS
    J Biol Chem; 1993 Jun; 268(18):13043-9. PubMed ID: 8514745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the catalytic subunit of bovine heart cAMP-dependent protein kinase with affinity labels related to peptide substrates.
    Bramson HN; Thomas N; Matsueda R; Nelson NC; Taylor SS; Kaiser ET
    J Biol Chem; 1982 Sep; 257(18):10575-81. PubMed ID: 6286662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATPase-promoting dead end inhibitors of the cAMP-dependent protein kinase.
    Mendelow M; Prorok M; Salerno A; Lawrence DS
    J Biol Chem; 1993 Jun; 268(17):12289-96. PubMed ID: 8509366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent modification of protein kinase C isozymes by the inactivating peptide substrate analog N-biotinyl-Arg-Arg-Arg-Cys-Leu-Arg-Arg-Leu. Evidence that the biotinylated peptide is an active-site affinity label.
    Ward NE; Gravitt KR; O'Brian CA
    J Biol Chem; 1996 Sep; 271(39):24193-200. PubMed ID: 8798661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A peptide substrate-based affinity label blocks protein kinase C-catalyzed ATP hydrolysis and peptide-substrate phosphorylation.
    Ward NE; Pierce DS; Stewart JR; O'brian CA
    Arch Biochem Biophys; 1999 May; 365(2):248-53. PubMed ID: 10328819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple arginine residues contribute to the increased efficacy of peptide substrates for the cAMP-dependent protein kinase.
    Prorok M; Lawrence DS
    Biochem Biophys Res Commun; 1989 Nov; 165(1):368-71. PubMed ID: 2590233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncovalent active site interactions enhance the affinity and control the binding order of reversible inhibitors of the cAMP-dependent protein kinase.
    Salerno A; Mendelow M; Prorok M; Lawrence DS
    J Biol Chem; 1990 Oct; 265(30):18079-82. PubMed ID: 2145279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of amino acid residues involved in substrate recognition by the catalytic subunit of bovine cyclic AMP dependent protein kinase: peptide-based affinity labels.
    Mobashery S; Kaiser ET
    Biochemistry; 1988 May; 27(10):3691-6. PubMed ID: 3408721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irreversible inactivation of protein kinase C by a peptide-substrate analog.
    Ward NE; Gravitt KR; O'Brian CA
    J Biol Chem; 1995 Apr; 270(14):8056-60. PubMed ID: 7713907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the catalytic subunit of bovine cAMP-dependent protein kinase by a peptide-based affinity inactivator.
    Mobashery S; Doughty M; Kaiser ET
    Biopolymers; 1990 Jan; 29(1):131-8. PubMed ID: 2328282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal spatial requirements for the location of basic residues in peptide substrates for the cyclic AMP-dependent protein kinase.
    Feramisco JR; Glass DB; Krebs EG
    J Biol Chem; 1980 May; 255(9):4240-5. PubMed ID: 6246116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the peptide binding site of the cAMP-dependent protein kinase by using a peptide-based photoaffinity label.
    Miller WT; Kaiser ET
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5429-33. PubMed ID: 3399499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid sequence of a probable amylase/protease inhibitor from rice seeds.
    Yu YG; Chung CH; Fowler A; Suh SW
    Arch Biochem Biophys; 1988 Sep; 265(2):466-75. PubMed ID: 2458699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of universal cysteines in the binding sites of three opioid receptor subtypes by disulfide-bonding affinity labeling with chemically activated thiol-containing dynorphin A analogs.
    Shirasu N; Kuromizu T; Nakao H; Chuman Y; Nose T; Costa T; Shimohigashi Y
    J Biochem; 1999 Jul; 126(1):254-9. PubMed ID: 10393346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity labeling of cAMP-dependent protein kinase with p-fluorosulfonylbenzoyl adenosine. Covalent modification of lysine 71.
    Zoller MJ; Nelson NC; Taylor SS
    J Biol Chem; 1981 Nov; 256(21):10837-42. PubMed ID: 6270132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A potent fluorescent ATP-like inhibitor of cAMP-dependent protein kinase.
    Wu JC; Chuan H; Wang JH
    J Biol Chem; 1989 May; 264(14):7989-93. PubMed ID: 2542258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid sequence of bovine angiogenin.
    Bond MD; Strydom DJ
    Biochemistry; 1989 Jul; 28(14):6110-3. PubMed ID: 2775757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The active site of creatine kinase. Affinity labeling of cysteine 282 with N-(2,3-epoxypropyl)-N-amidinoglycine.
    Buechter DD; Medzihradszky KF; Burlingame AL; Kenyon GL
    J Biol Chem; 1992 Feb; 267(4):2173-8. PubMed ID: 1733925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoaffinity labeling and site-directed mutagenesis of rat squalene epoxidase.
    Lee HK; Denner-Ancona P; Sakakibara J; Ono T; Prestwich GD
    Arch Biochem Biophys; 2000 Sep; 381(1):43-52. PubMed ID: 11019818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase.
    Cheng HC; Kemp BE; Pearson RB; Smith AJ; Misconi L; Van Patten SM; Walsh DA
    J Biol Chem; 1986 Jan; 261(3):989-92. PubMed ID: 3511044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.