These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8514810)

  • 1. Assessment of gait patterns using neural networks.
    Holzreiter SH; Köhle ME
    J Biomech; 1993 Jun; 26(6):645-51. PubMed ID: 8514810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural networks for detection and classification of walking pattern changes due to ageing.
    Begg R; Kamruzzaman J
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):188-95. PubMed ID: 16845924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.
    Andrade A; Costa M; Paolucci L; Braga A; Pires F; Ugrinowitsch H; Menzel HJ
    Comput Methods Biomech Biomed Engin; 2015; 18(4):382-90. PubMed ID: 23768190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network representation of electromyography and joint dynamics in human gait.
    Sepulveda F; Wells DM; Vaughan CL
    J Biomech; 1993 Feb; 26(2):101-9. PubMed ID: 8429053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An instance-based algorithm with auxiliary similarity information for the estimation of gait kinematics from wearable sensors.
    Goulermas JY; Findlow AH; Nester CJ; Liatsis P; Zeng XJ; Kenney LP; Tresadern P; Thies SB; Howard D
    IEEE Trans Neural Netw; 2008 Sep; 19(9):1574-82. PubMed ID: 18779089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnosing health problems from gait patterns of elderly.
    Pogorelc B; Gams M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2238-41. PubMed ID: 21096794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and testing of a genetic algorithm neural network in the assessment of gait patterns.
    Su FC; Wu WL
    Med Eng Phys; 2000 Jan; 22(1):67-74. PubMed ID: 10817950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait features analysis using artificial neural networks - testing the footwear effect.
    Wang J; Zielińska T
    Acta Bioeng Biomech; 2017; 19(1):17-32. PubMed ID: 28552925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human gait recognition via deterministic learning.
    Zeng W; Wang C
    Neural Netw; 2012 Nov; 35():92-102. PubMed ID: 22982093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human gait classification after lower limb fracture using Artificial Neural Networks and principal component analysis.
    Lozano-Ortiz CA; Muniz AM; Nadal J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1413-6. PubMed ID: 21096345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. novel Award Third Prize Paper. Assessment of the horizontal,fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks.
    Savelberg HH; de Lange AL
    Clin Biomech (Bristol); 1999 Oct; 14(8):585-92. PubMed ID: 10521642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support vector machines for automated gait classification.
    Begg RK; Palaniswami M; Owen B
    IEEE Trans Biomed Eng; 2005 May; 52(5):828-38. PubMed ID: 15887532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertical ground reaction forces in patients after calcaneal trauma surgery.
    van Hoeve S; Verbruggen J; Willems P; Meijer K; Poeze M
    Gait Posture; 2017 Oct; 58():523-526. PubMed ID: 28961549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GAIT PATTERN RECOGNITION IN CEREBRAL PALSY PATIENTS USING NEURAL NETWORK MODELLING.
    Muhammad J; Gibbs S; Abboud R; Anand S; Wang W
    J Ayub Med Coll Abbottabad; 2015; 27(4):754-8. PubMed ID: 27004315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait characteristics and functional outcomes during early follow-up are comparable in patients with calcaneal fractures treated by either the sinus tarsi or the extended lateral approach.
    Brand A; Klöpfer-Krämer I; Böttger M; Kröger I; Gaul L; Wackerle H; Müßig JA; Dietrich A; Gabel J; Augat P
    Gait Posture; 2019 May; 70():190-195. PubMed ID: 30884444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
    Ferreira JP; Crisóstomo MM; Coimbra AP
    IEEE Trans Neural Netw; 2009 Dec; 20(12):1885-97. PubMed ID: 19840908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait event detection using a multilayer neural network.
    Miller A
    Gait Posture; 2009 Jun; 29(4):542-5. PubMed ID: 19135372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCA-based SVM for automatic recognition of gait patterns.
    Wu J; Wang J
    J Appl Biomech; 2008 Feb; 24(1):83-7. PubMed ID: 18309187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.