These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8515148)

  • 21. Temperature measurement errors with thermocouples inside 27 MHz current source interstitial hyperthermia applicators.
    Kaatee RS; Crezee H; Visser AG
    Phys Med Biol; 1999 Jun; 44(6):1499-511. PubMed ID: 10498519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Air-cooling of direct-coupled ultrasound applicators for interstitial hyperthermia and thermal coagulation.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 1998 Dec; 25(12):2400-9. PubMed ID: 9874834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer.
    Price MJ; Gifford KA; Horton JL; Eifel PJ; Gillin MT; Lawyer AA; Mourtada F
    Med Phys; 2009 Sep; 36(9):4147-55. PubMed ID: 19810488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A coaxial applicator for intracavitary hyperthermia of carcinoma of the cervix.
    Hand JW; Blake PR; Hopewell JW; Lambert HW; Field SB
    Prog Clin Biol Res; 1982; 107():635-9. PubMed ID: 7167514
    [No Abstract]   [Full Text] [Related]  

  • 25. Regional hyperthermia applicator design using FDTD modelling.
    Kroeze H; Van de Kamer JB; De Leeuw AA; Lagendijk JJ
    Phys Med Biol; 2001 Jul; 46(7):1919-35. PubMed ID: 11474934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of prototype shielded cervical intracavitary brachytherapy applicators compatible with CT and MR imaging.
    Price MJ; Jackson EF; Gifford KA; Eifel PJ; Mourtada F
    Med Phys; 2009 Dec; 36(12):5515-24. PubMed ID: 20095264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators.
    Yeh MM; Trembly BS; Douple EB; Ryan TP; Hoopes PJ; Jonsson E; Heaney JA
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):874-82. PubMed ID: 7959814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Study of a new microwave applicator for hyperthermia treatment of uterocervical cancer].
    Wang W; Ding R; Wang H; Li Y; Lin S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):175-7. PubMed ID: 11951512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dosimetric comparison between applicators used for brachytherapy in carcinoma cervix - A single-institute prospective study.
    Suryadevara A; Kumar MV; Vasundhara E; Alluri KR; Ahamed S; Guduru S
    Indian J Cancer; 2018; 55(3):230-232. PubMed ID: 30693884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and characterization of an intracavitary ultrasound hyperthermia applicator for recurrent or residual lesions in the vaginal cuff.
    Lee RJ; Suh H
    Int J Hyperthermia; 2003; 19(5):563-74. PubMed ID: 12944170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Irradiation technic, documentation and individual dosimetry in intracavitary short-term afterloading therapy].
    Thesen N
    Strahlentherapie; 1985 Aug; 161(8):476-86. PubMed ID: 3927527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and thermometry of an intracavitary microwave applicator suitable for treatment of some vaginal and rectal cancers.
    Li DJ; Luk KH; Jiang HB; Chou CK; Hwang GZ
    Int J Radiat Oncol Biol Phys; 1984 Nov; 10(11):2155-62. PubMed ID: 6490441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Rectal shielding for a Selectron-ring applicator system (HDR- and LDR-afterloading)].
    Hetzel H; Kamleitner H; McCoy M; Frommhold H
    Strahlenther Onkol; 1987 Dec; 163(12):782-6. PubMed ID: 3424077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified ovoid applicator for intracavitary radiation therapy with a Selectron-MDR or microSelectron-HDR.
    Teshima T; Inoue T; Ozeki S; Inoue T; Ohtani M; Nose T; Yamazaki H; Ikeda H; Murayama S
    Radiat Med; 1994; 12(6):289-91. PubMed ID: 7724823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters.
    Leybovich LB; Myerson RJ; Emami B; Straube WL
    Int J Hyperthermia; 1991; 7(6):917-35. PubMed ID: 1806645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of the Botstein-Zacharopolous radiation applicator.
    Selim MA; Derda H; Neuman MR; Shalodi AD; Sharan VM
    Int J Radiat Oncol Biol Phys; 1986 Feb; 12(2):251-4. PubMed ID: 3949575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the validity of the superposition principle in dose calculations for intracavitary implants with shielded vaginal colpostats.
    Markman J; Williamson JF; Dempsey JF; Low DA
    Med Phys; 2001 Feb; 28(2):147-55. PubMed ID: 11243337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Study of the type of Co-60 source and applicators for carcinoma of the uterine cervix using a remote afterloading device].
    Morita K; Uchiyama Y
    Gan No Rinsho; 1987 Sep; 33(11):1318-28. PubMed ID: 3669319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.