These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 8515439)
1. Asp ligand provides the trigger for closure of transferrin molecules. Direct evidence from X-ray scattering studies of site-specific mutants of the N-terminal half-molecule of human transferrin. Grossmann JG; Mason AB; Woodworth RC; Neu M; Lindley PF; Hasnain SS J Mol Biol; 1993 Jun; 231(3):554-8. PubMed ID: 8515439 [TBL] [Abstract][Full Text] [Related]
2. The nature of ligand-induced conformational change in transferrin in solution. An investigation using X-ray scattering, XAFS and site-directed mutants. Grossmann JG; Crawley JB; Strange RW; Patel KJ; Murphy LM; Neu M; Evans RW; Hasnain SS J Mol Biol; 1998 Jun; 279(2):461-72. PubMed ID: 9642050 [TBL] [Abstract][Full Text] [Related]
3. Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Jeffrey PD; Bewley MC; MacGillivray RT; Mason AB; Woodworth RC; Baker EN Biochemistry; 1998 Oct; 37(40):13978-86. PubMed ID: 9760232 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional consequences of binding site mutations in transferrin: crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin. Baker HM; He QY; Briggs SK; Mason AB; Baker EN Biochemistry; 2003 Jun; 42(23):7084-9. PubMed ID: 12795604 [TBL] [Abstract][Full Text] [Related]
5. Mutational analysis of C-lobe ligands of human serum transferrin: insights into the mechanism of iron release. Mason AB; Halbrooks PJ; James NG; Connolly SA; Larouche JR; Smith VC; MacGillivray RT; Chasteen ND Biochemistry; 2005 Jun; 44(22):8013-21. PubMed ID: 15924420 [TBL] [Abstract][Full Text] [Related]
6. Domain closure mechanism in transferrins: new viewpoints about the hinge structure and motion as deduced from high resolution crystal structures of ovotransferrin N-lobe. Mizutani K; Mikami B; Hirose M J Mol Biol; 2001 Jun; 309(4):937-47. PubMed ID: 11399070 [TBL] [Abstract][Full Text] [Related]
7. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. He QY; Mason AB; Tam BM; MacGillivray RT; Woodworth RC Biochemistry; 1999 Jul; 38(30):9704-11. PubMed ID: 10423249 [TBL] [Abstract][Full Text] [Related]
8. Metal-induced conformational changes in transferrins. Grossmann JG; Neu M; Evans RW; Lindley PF; Appel H; Hasnain SS J Mol Biol; 1993 Feb; 229(3):585-90. PubMed ID: 8433360 [TBL] [Abstract][Full Text] [Related]
9. Altered domain closure and iron binding in transferrins: the crystal structure of the Asp60Ser mutant of the amino-terminal half-molecule of human lactoferrin. Faber HR; Bland T; Day CL; Norris GE; Tweedie JW; Baker EN J Mol Biol; 1996 Feb; 256(2):352-63. PubMed ID: 8594202 [TBL] [Abstract][Full Text] [Related]
10. Tertiary structural changes and iron release from human serum transferrin. Mecklenburg SL; Donohoe RJ; Olah GA J Mol Biol; 1997 Aug; 270(5):739-50. PubMed ID: 9245601 [TBL] [Abstract][Full Text] [Related]
11. Mutagenesis of the histidine ligand in human lactoferrin: iron binding properties and crystal structure of the histidine-253-->methionine mutant. Nicholson H; Anderson BF; Bland T; Shewry SC; Tweedie JW; Baker EN Biochemistry; 1997 Jan; 36(2):341-6. PubMed ID: 9003186 [TBL] [Abstract][Full Text] [Related]
12. Transferrins: iron release from lactoferrin. Abdallah FB; El Hage Chahine JM J Mol Biol; 2000 Oct; 303(2):255-66. PubMed ID: 11023790 [TBL] [Abstract][Full Text] [Related]
13. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release. Halbrooks PJ; Giannetti AM; Klein JS; Björkman PJ; Larouche JR; Smith VC; MacGillivray RT; Everse SJ; Mason AB Biochemistry; 2005 Nov; 44(47):15451-60. PubMed ID: 16300393 [TBL] [Abstract][Full Text] [Related]
14. Transferrin, is a mixed chelate-protein ternary complex involved in the mechanism of iron uptake by serum-transferrin in vitro? Pakdaman R; Abdallah FB; El Hage Chahine JM J Mol Biol; 1999 Nov; 293(5):1273-84. PubMed ID: 10547300 [TBL] [Abstract][Full Text] [Related]
15. Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release. MacGillivray RT; Moore SA; Chen J; Anderson BF; Baker H; Luo Y; Bewley M; Smith CA; Murphy ME; Wang Y; Mason AB; Woodworth RC; Brayer GD; Baker EN Biochemistry; 1998 Jun; 37(22):7919-28. PubMed ID: 9609685 [TBL] [Abstract][Full Text] [Related]
16. Iron release is reduced by mutations of lysines 206 and 296 in recombinant N-terminal half-transferrin. Steinlein LM; Ligman CM; Kessler S; Ikeda RA Biochemistry; 1998 Sep; 37(39):13696-703. PubMed ID: 9753457 [TBL] [Abstract][Full Text] [Related]
17. Structures of two mutants that probe the role in iron release of the dilysine pair in the N-lobe of human transferrin. Baker HM; Nurizzo D; Mason AB; Baker EN Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):408-14. PubMed ID: 17327678 [TBL] [Abstract][Full Text] [Related]
18. Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase. Perry A; Tambyrajah W; Grossmann JG; Lian LY; Scrutton NS Biochemistry; 2004 Mar; 43(11):3167-82. PubMed ID: 15023067 [TBL] [Abstract][Full Text] [Related]
19. Reptilian transferrins: evolution of disulphide bridges and conservation of iron-binding center. Ciuraszkiewicz J; Biczycki M; Maluta A; Martin S; Watorek W; Olczak M Gene; 2007 Jul; 396(1):28-38. PubMed ID: 17466466 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of diferric hen ovotransferrin at 2.4 A resolution. Kurokawa H; Mikami B; Hirose M J Mol Biol; 1995 Nov; 254(2):196-207. PubMed ID: 7490743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]