BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1581 related articles for article (PubMed ID: 8515441)

  • 21. The phenotype of mutations of G2655 in the sarcin/ricin domain of 23 S ribosomal RNA.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(3):965-75. PubMed ID: 9918717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Mutations in the Escherichia coli 23S rRNA increase the rate of peptidyl-tRNA dissociation from the ribosome].
    Maĭvali U; Saarma U; Remme Ia
    Mol Biol (Mosk); 2001; 35(4):666-71. PubMed ID: 11524953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsic termination of T7 RNA polymerase mediated by either RNA or DNA.
    Hartvig L; Christiansen J
    EMBO J; 1996 Sep; 15(17):4767-74. PubMed ID: 8887568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection.
    Zhang X; Studier FW
    J Mol Biol; 2004 Jul; 340(4):707-30. PubMed ID: 15223315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.
    Kipper K; Hetényi C; Sild S; Remme J; Liiv A
    J Mol Biol; 2009 Jan; 385(2):405-22. PubMed ID: 19007789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. T7 RNA polymerase directed expression of the Escherichia coli rrnB operon.
    Steen R; Dahlberg AE; Lade BN; Studier FW; Dunn JJ
    EMBO J; 1986 May; 5(5):1099-103. PubMed ID: 3013618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Point mutations in the leader boxA of a plasmid-encoded Escherichia coli rrnB operon cause defective antitermination in vivo.
    Heinrich T; Condon C; Pfeiffer T; Hartmann RK
    J Bacteriol; 1995 Jul; 177(13):3793-800. PubMed ID: 7601845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct localization by cryo-electron microscopy of secondary structural elements in Escherichia coli 23 S rRNA which differ from the corresponding regions in Haloarcula marismortui.
    Matadeen R; Sergiev P; Leonov A; Pape T; van der Sluis E; Mueller F; Osswald M; von Knoblauch K; Brimacombe R; Bogdanov A; van Heel M; Dontsova O
    J Mol Biol; 2001 Apr; 307(5):1341-9. PubMed ID: 11292346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic deletion of rRNAs for investigating ribosome architecture and function.
    Kitahara K; Sato NS; Namba N; Yokota T; Tsujimura T; Suzuki T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):287-8. PubMed ID: 17150930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of ribosomal subunit association: oligodeoxynucleotides as probes.
    Agrawal RK; De A; Burma DP
    Indian J Biochem Biophys; 1992 Apr; 29(2):148-53. PubMed ID: 1398707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution.
    Dube P; Bacher G; Stark H; Mueller F; Zemlin F; van Heel M; Brimacombe R
    J Mol Biol; 1998 Jun; 279(2):403-21. PubMed ID: 9642046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA.
    Ostergaard P; Phan H; Johansen LB; Egebjerg J; Ostergaard L; Porse BT; Garrett RA
    J Mol Biol; 1998 Nov; 284(2):227-40. PubMed ID: 9813114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly.
    Liiv A; Remme J
    J Mol Biol; 2004 Sep; 342(3):725-41. PubMed ID: 15342233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activities of constitutive promoters in Escherichia coli.
    Liang S; Bipatnath M; Xu Y; Chen S; Dennis P; Ehrenberg M; Bremer H
    J Mol Biol; 1999 Sep; 292(1):19-37. PubMed ID: 10493854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre.
    Porse BT; Leviev I; Mankin AS; Garrett RA
    J Mol Biol; 1998 Feb; 276(2):391-404. PubMed ID: 9512711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of induction of rRNA overproduction on ribosomal protein synthesis and ribosome subunit assembly in Escherichia coli.
    Yamagishi M; Nomura M
    J Bacteriol; 1988 Nov; 170(11):5042-50. PubMed ID: 3053641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic mechanism of transcription initiation by bacteriophage T7 RNA polymerase.
    Jia Y; Patel SS
    Biochemistry; 1997 Apr; 36(14):4223-32. PubMed ID: 9100017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Escherichia coli m2G methyltransferases: II. The ygjO gene encodes a methyltransferase specific for G1835 of the 23 S rRNA.
    Sergiev PV; Lesnyak DV; Bogdanov AA; Dontsova OA
    J Mol Biol; 2006 Nov; 364(1):26-31. PubMed ID: 17010380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre.
    Porse BT; Cundliffe E; Garrett RA
    J Mol Biol; 1999 Mar; 287(1):33-45. PubMed ID: 10074405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacteriophage T7 RNA polymerase and its active-site mutants. Kinetic, spectroscopic and calorimetric characterization.
    Osumi-Davis PA; Sreerama N; Volkin DB; Middaugh CR; Woody RW; Woody AY
    J Mol Biol; 1994 Mar; 237(1):5-19. PubMed ID: 8133519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 80.