BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8515449)

  • 1. Nuclear magnetic resonance comparison of the binding sites of mithramycin and chromomycin on the self-complementary oligonucleotide d(ACCCGGGT)2. Evidence that the saccharide chains have a role in sequence specificity.
    Keniry MA; Banville DL; Simmonds PM; Shafer R
    J Mol Biol; 1993 Jun; 231(3):753-67. PubMed ID: 8515449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three-dimensional structure of the 4:1 mithramycin:d(ACCCGGGT)(2) complex: evidence for an interaction between the E saccharides.
    Keniry MA; Owen EA; Shafer RH
    Biopolymers; 2000 Aug; 54(2):104-14. PubMed ID: 10861371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of mithramycin dimers bound to partially overlapping sites on DNA.
    Sastry M; Fiala R; Patel DJ
    J Mol Biol; 1995 Sep; 251(5):674-89. PubMed ID: 7666419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential interactions of the Mg2+ complexes of chromomycin A3 and mithramycin with poly(dG-dC) x poly(dC-dG) and poly(dG) x poly(dC).
    Majee S; Sen R; Guha S; Bhattacharyya D; Dasgupta D
    Biochemistry; 1997 Feb; 36(8):2291-9. PubMed ID: 9047331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of chromomycin A3 and mithramycin with the sequence d(TAGCTAGCTA)2.
    Chakrabarti S; Dasgupta D
    Indian J Biochem Biophys; 2001; 38(1-2):64-70. PubMed ID: 11563333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An NMR study on the conformation of a deoxyoligonucleotide duplex, d(GGGGCCCC)2, and its complex with chromomycin.
    Sakaguchi R; Katahira M; Kyogoku Y; Fujii S
    J Biochem; 1991 Feb; 109(2):317-27. PubMed ID: 1864843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of the mithramycin dimer-DNA complex.
    Sastry M; Patel DJ
    Biochemistry; 1993 Jul; 32(26):6588-604. PubMed ID: 8329387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR investigation of the interaction of mithramycin A with d(ACCCGGGT)2.
    Keniry MA; Banville DL; Levenson C; Shafer RH
    FEBS Lett; 1991 Sep; 289(2):210-2. PubMed ID: 1833239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR investigation of mithramycin A binding to d(ATGCAT)2: a comparative study with chromomycin A3.
    Banville DL; Keniry MA; Shafer RH
    Biochemistry; 1990 Oct; 29(39):9294-304. PubMed ID: 2148686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout.
    Franklin SJ; Barton JK
    Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biospecific interaction analysis (BIA) of low-molecular weight DNA-binding drugs.
    Gambari R; Feriotto G; Rutigliano C; Bianchi N; Mischiati C
    J Pharmacol Exp Ther; 2000 Jul; 294(1):370-7. PubMed ID: 10871335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The solution conformation of the antibiotic anticancer chromomycin A3 by two-dimensional NMR spectroscopy.
    Berman E; Kam M
    Prog Clin Biol Res; 1989; 289():217-27. PubMed ID: 2498896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential interactions of antitumor antibiotics chromomycin A(3) and mithramycin with d(TATGCATA)(2) in presence of Mg(2+).
    Chakrabarti S; Mir MA; Dasgupta D
    Biopolymers; 2001; 62(3):131-40. PubMed ID: 11343281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of DNA recognition by anticancer antibiotics, chromomycin A(3), and mithramycin: roles of minor groove width and ligand flexibility.
    Chakrabarti S; Bhattacharyya D; Dasgupta D
    Biopolymers; 2000-2001; 56(2):85-95. PubMed ID: 11592055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA binding characteristics of mithramycin and chromomycin analogues obtained by combinatorial biosynthesis.
    Barceló F; Ortiz-Lombardía M; Martorell M; Oliver M; Méndez C; Salas JA; Portugal J
    Biochemistry; 2010 Dec; 49(49):10543-52. PubMed ID: 21067184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra- and intermolecular triplex DNA formation in the murine c-myb proto-oncogene promoter are inhibited by mithramycin.
    Vigneswaran N; Thayaparan J; Knops J; Trent J; Potaman V; Miller DM; Zacharias W
    Biol Chem; 2001 Feb; 382(2):329-42. PubMed ID: 11308031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromomycin dimer-DNA oligomer complexes. Sequence selectivity and divalent cation specificity.
    Gao XL; Patel DJ
    Biochemistry; 1990 Dec; 29(49):10940-56. PubMed ID: 2176890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II).
    Van Dyke MW; Dervan PB
    Biochemistry; 1983 May; 22(10):2373-7. PubMed ID: 6222762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations into the sequence-selective binding of mithramycin and related ligands to DNA.
    Fox KR; Howarth NR
    Nucleic Acids Res; 1985 Dec; 13(24):8695-714. PubMed ID: 2934687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the DNA-binding antitumor antibiotics, chromomycin and mithramycin with erythroid spectrin.
    Majee S; Dasgupta D; Chakrabarti A
    Eur J Biochem; 1999 Mar; 260(3):619-26. PubMed ID: 10102989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.