These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 8515459)

  • 1. Stability and folding kinetics of ribonuclease T1 are strongly altered by the replacement of cis-proline 39 with alanine.
    Mayr LM; Landt O; Hahn U; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):897-912. PubMed ID: 8515459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of primary sequence transpositions on the folding pathways of ribonuclease T1.
    Johnson JL; Raushel FM
    Biochemistry; 1996 Aug; 35(31):10223-33. PubMed ID: 8756488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1.
    Mayr LM; Willbold D; Landt O; Schmid FX
    Protein Sci; 1994 Feb; 3(2):227-39. PubMed ID: 8003959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of a non-prolyl cis peptide bond in ribonuclease T1.
    Mayr LM; Willbold D; Rösch P; Schmid FX
    J Mol Biol; 1994 Jul; 240(4):288-93. PubMed ID: 8035456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique.
    Mayr LM; Odefey C; Schutkowski M; Schmid FX
    Biochemistry; 1996 Apr; 35(17):5550-61. PubMed ID: 8611546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of RNase T1 is decelerated by a specific tertiary contact in a folding intermediate.
    Kiefhaber T; Grunert HP; Hahn U; Schmid FX
    Proteins; 1992 Feb; 12(2):171-9. PubMed ID: 1603806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A.
    Dodge RW; Scheraga HA
    Biochemistry; 1996 Feb; 35(5):1548-59. PubMed ID: 8634286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds.
    Mücke M; Schmid FX
    Biochemistry; 1994 Dec; 33(48):14608-19. PubMed ID: 7981223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intact disulfide bonds decelerate the folding of ribonuclease T1.
    Mücke M; Schmid FX
    J Mol Biol; 1994 Jun; 239(5):713-25. PubMed ID: 8014991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosyl interactions in the folding and unfolding of bovine pancreatic ribonuclease A: a study of tyrosine-to-phenylalanine mutants.
    Juminaga D; Wedemeyer WJ; Garduño-Júarez R; McDonald MA; Scheraga HA
    Biochemistry; 1997 Aug; 36(33):10131-45. PubMed ID: 9254610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactivity of folding intermediates studied by the recovery of enzymatic activity during refolding.
    Aumüller T; Fischer G
    J Mol Biol; 2008 Mar; 376(5):1478-92. PubMed ID: 18234226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacement of a cis proline simplifies the mechanism of ribonuclease T1 folding.
    Kiefhaber T; Grunert HP; Hahn U; Schmid FX
    Biochemistry; 1990 Jul; 29(27):6475-80. PubMed ID: 2119802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved FTIR difference spectroscopy as tool for investigating refolding reactions of ribonuclease T1 synchronized with trans --> cis prolyl isomerization.
    Moritz R; Reinstädler D; Fabian H; Naumann D
    Biopolymers; 2002; 67(3):145-55. PubMed ID: 11979593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of multiple prolyl isomerization reactions on the stability and folding kinetics of the notch ankyrin domain: experiment and theory.
    Bradley CM; Barrick D
    J Mol Biol; 2005 Sep; 352(2):253-65. PubMed ID: 16054647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium and kinetic analyses of unfolding and refolding for the conserved proline mutants of tryptophan synthase alpha subunit.
    Ogasahara K; Yutani K
    Biochemistry; 1997 Jan; 36(4):932-40. PubMed ID: 9020793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-prolyl cis-trans peptide bond isomerization as a rate-determining step in protein unfolding and refolding.
    Odefey C; Mayr LM; Schmid FX
    J Mol Biol; 1995 Jan; 245(1):69-78. PubMed ID: 7823321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.