These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 851602)

  • 1. [Use of local electromyography for revealing conductivity along efferent pathways in patients with traumatic lesions of the spinal cord ].
    Beliaev VI
    Biull Eksp Biol Med; 1977 Jan; 83(1):13-5. PubMed ID: 851602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Studies of efferent conductivity along the spinal cord after traumatic injury].
    Livshits AV; Beliaev VI
    Zh Vopr Neirokhir Im N N Burdenko; 1984; (4):19-22. PubMed ID: 6495951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Electrical activity of motor unit action potentials following spinal cord injury].
    Beliaev VI
    Biull Eksp Biol Med; 1978 Sep; 86(9):267-70. PubMed ID: 698361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Jendrassik's maneuver for determination of efferent conduction in spinal cord injuries].
    Livshits AV; Beliaev VI; Latash ML
    Zh Vopr Neirokhir Im N N Burdenko; 1986; (5):43-7. PubMed ID: 3799127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of motor function in lesions of the spinal cord by stimulation of the motor cortex.
    Thompson PD; Dick JP; Asselman P; Griffin GB; Day BL; Rothwell JC; Sheehy MP; Marsden CD
    Ann Neurol; 1987 Apr; 21(4):389-96. PubMed ID: 3579225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromyography detects mechanically-induced suprasegmental spinal motor tract injury: review of decompression at spinal cord level.
    Skinner SA; Transfeldt EE; Mehbod AA; Mullan JC; Perra JH
    Clin Neurophysiol; 2009 Apr; 120(4):754-64. PubMed ID: 19278900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The efferent conduction of the spinal cord following trauma].
    Piliavskiĭ AI; Iakhnitsa IA; Potekhin LD; Shpuntov AE
    Fiziol Cheloveka; 1989; 15(6):145-7. PubMed ID: 2632316
    [No Abstract]   [Full Text] [Related]  

  • 8. Spectral analysis of the electromyogram (EMG) in spinal cord trauma patients: II. Motor unit and interference EMG power spectra.
    Latash ML
    Electromyogr Clin Neurophysiol; 1988; 28(6):329-34. PubMed ID: 3248555
    [No Abstract]   [Full Text] [Related]  

  • 9. Hyponatremia in the acute stage after traumatic cervical spinal cord injury: clinical and neuroanatomic evidence for autonomic dysfunction.
    Furlan JC; Fehlings MG
    Spine (Phila Pa 1976); 2009 Mar; 34(5):501-11. PubMed ID: 19212273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ankle paresis in incomplete spinal cord injury: relation to corticospinal conductivity and ambulatory capacity.
    Wirth B; van Hedel HJ; Curt A
    J Clin Neurophysiol; 2008 Aug; 25(4):210-7. PubMed ID: 18677185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Diagnostic significance of the H-reflex in traumatic lesions of the spinal cord].
    Livshits AV; Beliaev VI
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1985; 85(12):1770-4. PubMed ID: 4090830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inseparable prognostic value of spinothalamic and corticospinal functions in severe spinal cord injuries].
    Vlahovitch B; Fuentes JM; Choucair Y; Verger AC
    Neurochirurgie; 1977 Mar; 23(1):55-72. PubMed ID: 593485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral analysis of the electromyogram (EMG) in spinal cord trauma patients: I: Different types of the EMG and corresponding spectra.
    Latash ML
    Electromyogr Clin Neurophysiol; 1988; 28(6):319-27. PubMed ID: 3073950
    [No Abstract]   [Full Text] [Related]  

  • 15. [Electromyographic indices of lesion to the spinal cord following its trauma].
    Nesmeianova TN
    Biull Eksp Biol Med; 1975 Oct; 80(10):25-9. PubMed ID: 1227613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of early motor and sensory evoked potentials in cervical spinal cord injury.
    Chéliout-Héraut F; Loubert G; Masri-Zada T; Aubrun F; Pasteyer J
    Neurophysiol Clin; 1998 Feb; 28(1):39-55. PubMed ID: 9562998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple sclerosis: assessment of lesional levels by means of transcranial stimulation.
    Segura MJ; Garcea O; Gandolfo CN; Sica RE
    Electromyogr Clin Neurophysiol; 1994 Jun; 34(4):249-55. PubMed ID: 8082612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous electromyographic potentials in chronic spinal cord injured patients: relation to spasticity and length of nerve.
    Campbell JW; Herbison GJ; Chen YT; Jaweed MM; Gussner CG
    Arch Phys Med Rehabil; 1991 Jan; 72(1):23-7. PubMed ID: 1985619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.