These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 851621)

  • 41. Development of axosomatic synapses of the Xenopus spinal cord with special reference to subsurface cisterns and C-type synapses.
    Watanabe H
    J Comp Neurol; 1981 Aug; 200(3):323-8. PubMed ID: 7276242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Central synapses of spinal motoneurons innervating the trunk swimming muscles of Xenopus laevis embryos.
    Roberts A; Walford A
    Acta Biol Hung; 1996; 47(1-4):371-84. PubMed ID: 9124006
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photographic presentation of the different synapses in nodal synaptic boutons arising from Ranvier's nodes in the anterior horn of cat's spinal cord.
    Kojima T; Saito K
    J Electron Microsc (Tokyo); 1968; 17(4):344-5. PubMed ID: 5716320
    [No Abstract]   [Full Text] [Related]  

  • 44. [Structure of motor nuclei of the rat spinal cord during postnatal ontogeny (according to the results of light and electron microscopic studies].
    Motorina MV
    Arkh Anat Gistol Embriol; 1980 Mar; 78(3):33-42. PubMed ID: 7396733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Motoneuronal death during human fetal development.
    Forger NG; Breedlove SM
    J Comp Neurol; 1987 Oct; 264(1):118-22. PubMed ID: 3680621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E; Berki A; Birinyi A; Puskár Z
    Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice.
    Avossa D; Grandolfo M; Mazzarol F; Zatta M; Ballerini L
    Neuroscience; 2006; 138(4):1179-94. PubMed ID: 16442737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The distribution of non-synaptic intercellular junctions during neurone differentiation in the developing spinal cord of the clawed toad.
    Hayes BP; Roberts A
    J Embryol Exp Morphol; 1975 Apr; 33(2):403-17. PubMed ID: 1176854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets.
    Itoh Y; Tessler A
    J Comp Neurol; 1990 Dec; 302(2):272-93. PubMed ID: 2289974
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture.
    Ullian EM; Harris BT; Wu A; Chan JR; Barres BA
    Mol Cell Neurosci; 2004 Feb; 25(2):241-51. PubMed ID: 15019941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synapse involvement of the dorsal horn in experimental lumbar nerve root compression: a light and electron microscopic study.
    Kobayashi S; Uchida K; Kokubo Y; Takeno K; Yayama T; Miyazaki T; Nakajima H; Nomura E; Mwaka E; Baba H
    Spine (Phila Pa 1976); 2008 Apr; 33(7):716-23. PubMed ID: 18379397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Light and electron microscopical observations of the ventral horn and ventral root in long term cultures of the spinal cord of the fetal mouse.
    Guillery RW; Sobkowicz HM; Scott GL
    J Comp Neurol; 1968 Dec; 134(4):433-76. PubMed ID: 5721159
    [No Abstract]   [Full Text] [Related]  

  • 53. Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord.
    Alvarez FJ; Dewey DE; Harrington DA; Fyffe RE
    J Comp Neurol; 1997 Mar; 379(1):150-70. PubMed ID: 9057118
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microglia in the prenatal mouse neostriatum and spinal cord.
    Sturrock RR
    J Anat; 1981 Dec; 133(Pt 4):499-512. PubMed ID: 7333957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synaptogenesis in the chick embryo spinal cord.
    Oppenheim RW; Foelix RF
    Nat New Biol; 1972 Jan; 235(56):126-8. PubMed ID: 4501198
    [No Abstract]   [Full Text] [Related]  

  • 56. Early stages of synaptogenesis in the cervical spinal cord of the chick embryo.
    Stelzner DJ; Martin AH; Scott GL
    Z Zellforsch Mikrosk Anat; 1973; 138(4):475-88. PubMed ID: 4198008
    [No Abstract]   [Full Text] [Related]  

  • 57. Organizational typology of interneuronal connections in the ventral horn of the cat spinal cord.
    Skibo GG; Pogorelaya NKh
    Neurosci Behav Physiol; 1978; 9(2):158-63. PubMed ID: 754054
    [No Abstract]   [Full Text] [Related]  

  • 58. [The ratio of cellular dimensions to cell concentration in the development of the anterior horn of the human spinal cord].
    DE LEONARDIS L
    Boll Soc Ital Biol Sper; 1952 Dec; 28(12):1878-9. PubMed ID: 13059102
    [No Abstract]   [Full Text] [Related]  

  • 59. Electron microscopy of presynaptic organelles of the spinal cord.
    GRAY EG
    J Anat; 1963 Jan; 97(Pt 1):101-6. PubMed ID: 13949972
    [No Abstract]   [Full Text] [Related]  

  • 60. The histogenesis of the spinal cord and the early development of behavior.
    BARRON DH
    Res Publ Assoc Res Nerv Ment Dis; 1954; 33():155-73. PubMed ID: 13246077
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.