These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 8516308)
1. Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Bennett CB; Lewis AL; Baldwin KK; Resnick MA Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5613-7. PubMed ID: 8516308 [TBL] [Abstract][Full Text] [Related]
2. A double-strand break within a yeast artificial chromosome (YAC) containing human DNA can result in YAC loss, deletion or cell lethality. Bennett CB; Westmoreland TJ; Snipe JR; Resnick MA Mol Cell Biol; 1996 Aug; 16(8):4414-25. PubMed ID: 8754842 [TBL] [Abstract][Full Text] [Related]
3. SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome. Bennett CB; Snipe JR; Westmoreland JW; Resnick MA Mol Cell Biol; 2001 Aug; 21(16):5359-73. PubMed ID: 11463819 [TBL] [Abstract][Full Text] [Related]
4. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Fasullo M; Bennett T; AhChing P; Koudelik J Mol Cell Biol; 1998 Mar; 18(3):1190-200. PubMed ID: 9488434 [TBL] [Abstract][Full Text] [Related]
5. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells. Galli A; Schiestl RH Genetics; 1998 Jul; 149(3):1235-50. PubMed ID: 9649517 [TBL] [Abstract][Full Text] [Related]
6. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Siede W; Friedberg AS; Dianova I; Friedberg EC Genetics; 1994 Oct; 138(2):271-81. PubMed ID: 7828811 [TBL] [Abstract][Full Text] [Related]
8. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Sweetser DB; Hough H; Whelden JF; Arbuckle M; Nickoloff JA Mol Cell Biol; 1994 Jun; 14(6):3863-75. PubMed ID: 8196629 [TBL] [Abstract][Full Text] [Related]
9. The mcm2-1 mutation of yeast causes DNA damage with a RAD9 requirement for repair. Ray A; Sinha P Curr Genet; 1995 Jan; 27(2):95-101. PubMed ID: 7788724 [TBL] [Abstract][Full Text] [Related]
10. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Siede W; Friedberg AS; Friedberg EC Proc Natl Acad Sci U S A; 1993 Sep; 90(17):7985-9. PubMed ID: 8367452 [TBL] [Abstract][Full Text] [Related]
11. Pathway utilization in response to a site-specific DNA double-strand break in fission yeast. Prudden J; Evans JS; Hussey SP; Deans B; O'Neill P; Thacker J; Humphrey T EMBO J; 2003 Mar; 22(6):1419-30. PubMed ID: 12628934 [TBL] [Abstract][Full Text] [Related]
12. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Weinert TA; Hartwell LH Mol Cell Biol; 1990 Dec; 10(12):6554-64. PubMed ID: 2247073 [TBL] [Abstract][Full Text] [Related]
13. Targeting a truncated Ho-endonuclease of yeast to novel DNA sites with foreign zinc fingers. Nahon E; Raveh D Nucleic Acids Res; 1998 Mar; 26(5):1233-9. PubMed ID: 9469831 [TBL] [Abstract][Full Text] [Related]
14. Involvement of RAD9-dependent damage checkpoint control in arrest of cell cycle, induction of cell death, and chromosome instability caused by defects in origin recognition complex in Saccharomyces cerevisiae. Watanabe K; Morishita J; Umezu K; Shirahige K; Maki H Eukaryot Cell; 2002 Apr; 1(2):200-12. PubMed ID: 12455955 [TBL] [Abstract][Full Text] [Related]
15. Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae. Siede W; Nusspaumer G; Portillo V; Rodriguez R; Friedberg EC Nucleic Acids Res; 1996 May; 24(9):1669-75. PubMed ID: 8649984 [TBL] [Abstract][Full Text] [Related]
16. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways. DeMase D; Zeng L; Cera C; Fasullo M DNA Repair (Amst); 2005 Jan; 4(1):59-69. PubMed ID: 15533838 [TBL] [Abstract][Full Text] [Related]
17. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Schiestl RH; Reynolds P; Prakash S; Prakash L Mol Cell Biol; 1989 May; 9(5):1882-96. PubMed ID: 2664461 [TBL] [Abstract][Full Text] [Related]
18. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Kondo T; Wakayama T; Naiki T; Matsumoto K; Sugimoto K Science; 2001 Oct; 294(5543):867-70. PubMed ID: 11679674 [TBL] [Abstract][Full Text] [Related]
19. RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. Gardner R; Putnam CW; Weinert T EMBO J; 1999 Jun; 18(11):3173-85. PubMed ID: 10357828 [TBL] [Abstract][Full Text] [Related]
20. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Sandell LL; Zakian VA Cell; 1993 Nov; 75(4):729-39. PubMed ID: 8242745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]