These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 851650)
1. Liquid chromatography of parathion and paraoxon with a relatively specific colorimetric auto analyzer system on-stream as secondary detector to an ultraviolet absorption detector. Ott DE Bull Environ Contam Toxicol; 1977 Mar; 17(3):261-8. PubMed ID: 851650 [No Abstract] [Full Text] [Related]
2. Comparison of analytical results obtained by gas and by high-pressure liquid chromatography of parathion and paraoxon in extracts prepared from orchard soil dust and dislodgable residues on orange leaves. Kvalvåg J; Elliott DL; Iwata Y; Gunther FA Bull Environ Contam Toxicol; 1977 Mar; 17(3):253-60. PubMed ID: 851649 [No Abstract] [Full Text] [Related]
3. Persistence of parathion and its oxidation to paraoxon on the soil surface as related to worker reentry into treated crops. Spencer WF; Cliath MM; Davis KR Bull Environ Contam Toxicol; 1975 Sep; 14(3):265-72. PubMed ID: 1174737 [TBL] [Abstract][Full Text] [Related]
4. Thin layer chromatography of parathion as paraoxon with cholinesterase inhibition detection. Nanda Kumar NV; Visweswariah K; Majumder SK J Assoc Off Anal Chem; 1976 May; 59(3):641-3. PubMed ID: 1270394 [TBL] [Abstract][Full Text] [Related]
5. Gas chromatographic determination of parathion and paraoxon in fish plasma and tissues. Abbas R; Hayton WL J Anal Toxicol; 1996; 20(3):151-4. PubMed ID: 8735194 [TBL] [Abstract][Full Text] [Related]
6. Photodegradation of parathion. Mok CY; Marriott P; Ong KL; Yeo GN Bull Environ Contam Toxicol; 1987 May; 38(5):820-6. PubMed ID: 3580599 [No Abstract] [Full Text] [Related]
7. Worker environment research. IV. The effect of dust derived from several soil types on the dissipation of parathion and paraoxon dislodgable residues on citrus foliage. Adams JD; Iwata Y; Gunther FA Bull Environ Contam Toxicol; 1976 May; 15(5):547-54. PubMed ID: 1268361 [TBL] [Abstract][Full Text] [Related]
8. Modeling of sorption and biodegradation of parathion and its metabolite paraoxon in soil. Saffih-Hdadi K; Bruckler L; Barriuso E J Environ Qual; 2003; 32(6):2207-15. PubMed ID: 14674543 [TBL] [Abstract][Full Text] [Related]
9. Spectrophotometric determination of parathion and paraoxon using alkaline hydroxylamine solution for the liberation of 4-nitrophenol. Ramakrishna N; Ramachandran BV Analyst; 1976 Jul; 101(1204):528-32. PubMed ID: 952403 [No Abstract] [Full Text] [Related]
10. Parathion: residues in soil and water. Sethunathan N; Siddaramappa R; Rajaram KP; Barik S; Wahid PA Residue Rev; 1977; 68():91-122. PubMed ID: 337436 [No Abstract] [Full Text] [Related]
11. Modeling impact of parathion and its metabolite paraoxon on the nematode Caenorhabditis elegans in soil. Saffih-Hdadi K; Bruckler L; Amichot M; Belzunces L Environ Toxicol Chem; 2005 Jun; 24(6):1387-94. PubMed ID: 16117114 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric determination of methyl parathion and oxygen analog. Nanda Kumar NV; Ramasundari M J Assoc Off Anal Chem; 1980 May; 63(3):536-8. PubMed ID: 7430041 [TBL] [Abstract][Full Text] [Related]
13. Airborne and surface residues of parathion and its conversion products in a treated plum orchard environment. Woodrow JE; Seiber JN; Crosby DG; Moilanen KW; Soderquist CJ; Mourer C Arch Environ Contam Toxicol; 1977; 6(2-3):175-91. PubMed ID: 901000 [TBL] [Abstract][Full Text] [Related]
14. Degradation of parathion applied to peach leaves. Winterlin W; Bailey JB; Langbehn L; Mourer C Pestic Monit J; 1975 Mar; 8(4):263-9. PubMed ID: 1161451 [TBL] [Abstract][Full Text] [Related]
15. Loss of paraoxon in aqueous acetonitrile extractions. McLean HR; Futagaki S; Leffingwell JT Bull Environ Contam Toxicol; 1977 Aug; 18(2):247-50. PubMed ID: 890161 [No Abstract] [Full Text] [Related]
16. Dissipation of parathion and related compounds from field-sprayed lettuce. Archer TE J Agric Food Chem; 1975; 23(5):858-60. PubMed ID: 1159184 [No Abstract] [Full Text] [Related]
17. A seasonal comparison of parathion degradation on oranges in Arizona. Takade DY; Burkart JA; Turner ER; Reynolds JM; Hearty P Bull Environ Contam Toxicol; 1979 Jan; 21(1-2):279-86. PubMed ID: 444705 [TBL] [Abstract][Full Text] [Related]
18. Ultrasensitive electrochemical sensor for p-nitrophenyl organophosphates based on ordered mesoporous carbons at low potential without deoxygenization. Zhang T; Zeng L; Han L; Li T; Zheng C; Wei M; Liu A Anal Chim Acta; 2014 Apr; 822():23-9. PubMed ID: 24725744 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of polymerized crystalline colloidal array thin film modified β-cyclodextrin polymer for paraoxon-ethyl and parathion-ethyl detection. Bui MP; Seo SS Anal Sci; 2014; 30(5):581-7. PubMed ID: 24813957 [TBL] [Abstract][Full Text] [Related]
20. Comparative metabolism of methyl parathion in intact and subcellular fractions of isolated rat hepatocytes. Anderson PN; Eaton DL; Murphy SD Fundam Appl Toxicol; 1992 Feb; 18(2):221-6. PubMed ID: 1601221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]