These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 851663)

  • 21. Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles.
    Lou Z; Yang WJ; Stein PD
    J Biomech; 1993; 26(4-5):383-90. PubMed ID: 8478343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of non-Newtonian behavior of blood on flow in an elastic artery model.
    Dutta A; Tarbell JM
    J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An interpretation of low strain rate blood viscosity measurements: a continuum approach.
    Deutsch S; Phillips WM
    Biorheology; 1976 Nov; 13(5):297-307. PubMed ID: 1000080
    [No Abstract]   [Full Text] [Related]  

  • 24. Capillary pore rheology of erythrocytes. V. The glass capillary array--effect of velocity and haematocrit in long bore tubes.
    Lingard PS
    Microvasc Res; 1979 May; 17(3 Pt 1):272-89. PubMed ID: 459940
    [No Abstract]   [Full Text] [Related]  

  • 25. Modeling of the wave transmission properties of large arteries using nonlinear elastic tubes.
    Pythoud F; Stergiopulos N; Meister JJ
    J Biomech; 1994 Nov; 27(11):1379-81. PubMed ID: 7798288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impedance of curved artery models.
    Kang SG; Tarbell JM
    J Biomech Eng; 1983 Aug; 105(3):275-82. PubMed ID: 6632831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pulsatile flow of a couple stress fluid through circular tubes with applications to blood flow.
    Chaturani P; Upadhya VS
    Biorheology; 1978; 15(3-4):193-201. PubMed ID: 737322
    [No Abstract]   [Full Text] [Related]  

  • 28. Transient rheological behavior of blood in low-shear tube flow: velocity profiles and effective viscosity.
    Alonso C; Pries AR; Kiesslich O; Lerche D; Gaehtgens P
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H25-32. PubMed ID: 7840268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RHEOLOGY IN MEDICINE AND SURGERY.
    DINTENFASS L
    Med J Aust; 1964 Dec; 2():926-30. PubMed ID: 14232466
    [No Abstract]   [Full Text] [Related]  

  • 30. Frequency dependence of blood viscosity in oscillatory flow.
    Coulter NA; Singh M
    Biorheology; 1971 Dec; 8(3):115-24. PubMed ID: 5146946
    [No Abstract]   [Full Text] [Related]  

  • 31. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elasticity of the pulmonary alveolar sheet.
    Fung YC; Sobin SS
    Circ Res; 1972 Apr; 30(4):451-69. PubMed ID: 5013860
    [No Abstract]   [Full Text] [Related]  

  • 34. Energy dissipation in mammalian arteries--an assessment of the distribution of energy dissipation between the blood and the vessel wall.
    Bodley WE
    J Biomech; 1976; 9(8):489-94. PubMed ID: 956192
    [No Abstract]   [Full Text] [Related]  

  • 35. Dynamic rheology of viscoelastic tubes.
    Collins R; Kivity Y
    Biorheology; 1978; 15(3-4):173-9. PubMed ID: 737320
    [No Abstract]   [Full Text] [Related]  

  • 36. Elastic effects in pulsatile blood flow.
    Thurston GB
    Microvasc Res; 1975 Mar; 9(2):145-57. PubMed ID: 1124003
    [No Abstract]   [Full Text] [Related]  

  • 37. Flow through a converging-diverging tube and its implications in occlusive vascular disease. I. Theoretical development.
    Forrester JH; Young DF
    J Biomech; 1970 May; 3(3):297-305. PubMed ID: 5521547
    [No Abstract]   [Full Text] [Related]  

  • 38. Mathematical analysis of the hysteresis rheogram of human blood.
    Fabisiak W; Huang CR
    Biorheology; 1980; 17(4):391-6. PubMed ID: 7260351
    [No Abstract]   [Full Text] [Related]  

  • 39. Waves in initially stressed fluid-filled thick tubes.
    Demiray H
    J Biomech; 1997 Mar; 30(3):273-6. PubMed ID: 9119827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. General fluid mechanical effects.
    Silberberg A
    Fed Proc; 1971; 30(5):1559-64. PubMed ID: 5119362
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.