These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8516773)

  • 1. Metabolism and pharmacokinetics of selected halon replacement candidates.
    Dodd DE; Brashear WT; Vinegar A
    Toxicol Lett; 1993 May; 68(1-2):37-47. PubMed ID: 8516773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pentahaloethane-based chlorofluorocarbon substitutes and halothane: correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation.
    Harris JW; Jones JP; Martin JL; LaRosa AC; Olson MJ; Pohl LR; Anders MW
    Chem Res Toxicol; 1992; 5(5):720-5. PubMed ID: 1446014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of 1-fluoro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane.
    Yin H; Jones JP; Anders MW
    Chem Res Toxicol; 1995 Mar; 8(2):262-8. PubMed ID: 7766810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations on the liver toxicity of a blend of HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) and HCFC-124 (2-chloro-1,1,1,2-tetrafluoroethane) in guinea-pigs.
    Hoet P; Buchet JP; Sempoux C; Nomiyama T; Rahier J; Lison D
    Arch Toxicol; 2001 Jul; 75(5):274-83. PubMed ID: 11548120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Setting safe acute exposure limits for halon replacement chemicals using physiologically based pharmacokinetic modeling.
    Vinegar A; Jepson GW; Cisneros M; Rubenstein R; Brock WJ
    Inhal Toxicol; 2000 Aug; 12(8):751-63. PubMed ID: 10880155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of the hydrochlorofluorocarbon 1,2-dichloro-1,1-difluoroethane.
    Harris JW; Anders MW
    Chem Res Toxicol; 1991; 4(2):180-6. PubMed ID: 1782346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-uptake pharmacokinetics and metabolism of 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124) in the rat, mouse, and hamster.
    Loizou GD; Anders MW
    Drug Metab Dispos; 1995 Aug; 23(8):875-80. PubMed ID: 7493556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123)-induced liver toxicity by ethanol in guinea-pigs.
    Hoet P; Buchet JP; Sempoux C; Haufroid V; Rahier J; Lison D
    Arch Toxicol; 2002 Dec; 76(12):707-14. PubMed ID: 12451447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of 1,1-dichloro-2,2,2-trifluoroethane in rats.
    Urban G; Dekant W
    Xenobiotica; 1994 Sep; 24(9):881-92. PubMed ID: 7810170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat to human extrapolation of HCFC-123 kinetics deduced from halothane kinetics: a corollary approach to physiologically based pharmacokinetic modeling.
    Williams RJ; Vinegar A; McDougal JN; Jarabek AM; Fisher JW
    Fundam Appl Toxicol; 1996 Mar; 30(1):55-66. PubMed ID: 8812223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicology of chlorofluorocarbon replacements.
    Dekant W
    Environ Health Perspect; 1996 Mar; 104 Suppl 1(Suppl 1):75-83. PubMed ID: 8722112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cytochrome P450 2E1 in the species-dependent biotransformation of 1,2-dichloro-1,1,2-trifluoroethane in rats and mice.
    Dekant W; Assmann M; Urban G
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):200-7. PubMed ID: 8545828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1.
    Urban G; Speerschneider P; Dekant W
    Chem Res Toxicol; 1994; 7(2):170-6. PubMed ID: 8199305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-dependent metabolism of 2,2-dichloro-1,1,1-trifluoroethane: a physiologically based pharmacokinetic model in the male Fischer 344 rat.
    Vinegar A; Williams RJ; Fisher JW; McDougal JN
    Toxicol Appl Pharmacol; 1994 Nov; 129(1):103-13. PubMed ID: 7974482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-uptake pharmacokinetics and biotransformation of 1,1-dichloro-1-fluoroethane (HCFC-141b).
    Loizou GD; Anders MW
    Drug Metab Dispos; 1993; 21(4):634-9. PubMed ID: 8104122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhalation teratology and reproduction studies with 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123).
    Malinverno G; Rusch GM; Millischer RJ; Hughes EW; Schroeder RE; Coombs DW
    Fundam Appl Toxicol; 1996 Dec; 34(2):276-87. PubMed ID: 8954757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic toxicity, oncogenicity, and mutagenicity studies with chlorotetrafluoroethane (HCFC-124).
    Malley LA; Frame SR; Elliott GS; Bentley KS; Brock WJ; Trochimowicz HJ; Rusch GM
    Drug Chem Toxicol; 1998 Nov; 21(4):417-47. PubMed ID: 9839154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue acylation by the chlorofluorocarbon substitute 2,2-dichloro-1,1,1-trifluoroethane.
    Harris JW; Pohl LR; Martin JL; Anders MW
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1407-10. PubMed ID: 1996342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane.
    Huwyler J; Aeschlimann D; Christen U; Gut J
    Eur J Biochem; 1992 Jul; 207(1):229-38. PubMed ID: 1628651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas-uptake pharmacokinetics of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123).
    Loizou GD; Urban G; Dekant W; Anders MW
    Drug Metab Dispos; 1994; 22(4):511-7. PubMed ID: 7956723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.