These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8517131)

  • 1. Neonatal cochlear hearing loss results in developmental abnormalities of the central auditory pathways.
    Harrison RV; Stanton SG; Ibrahim D; Nagasawa A; Mount RJ
    Acta Otolaryngol; 1993 May; 113(3):296-302. PubMed ID: 8517131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of long-term cochlear hearing loss on the functional organization of central auditory pathways.
    Harrison RV; Stanton SG; Nagasawa A; Ibrahim D; Mount RJ
    J Otolaryngol; 1993 Feb; 22(1):4-11. PubMed ID: 8445702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of cochlear pathology with auditory brainstem and cortical responses in cats with high frequency hearing loss.
    Mount RJ; Harrison RV; Stanton SG; Nagasawa A
    Scanning Microsc; 1991 Dec; 5(4):1105-12; discussion 1112-3. PubMed ID: 1822032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss.
    Harrison RV; Nagasawa A; Smith DW; Stanton S; Mount RJ
    Hear Res; 1991 Jul; 54(1):11-9. PubMed ID: 1917710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage.
    Wang J; Ding D; Salvi RJ
    Hear Res; 2002 Jun; 168(1-2):238-49. PubMed ID: 12117524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chronic cochlear damage on threshold and frequency tuning of neurons in AI auditory cortex.
    Harrison RV; Stanton SG; Mount RJ
    Acta Otolaryngol Suppl; 1995; 519():30-5. PubMed ID: 7610889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tonotopic mapping in auditory cortex of the adult chinchilla with amikacin-induced cochlear lesions.
    Kakigi A; Hirakawa H; Harel N; Mount RJ; Harrison RV
    Audiology; 2000; 39(3):153-60. PubMed ID: 10905401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla.
    Harrison RV; Ibrahim D; Mount RJ
    Exp Brain Res; 1998 Dec; 123(4):449-60. PubMed ID: 9870604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory plasticity and hyperactivity following cochlear damage.
    Salvi RJ; Wang J; Ding D
    Hear Res; 2000 Sep; 147(1-2):261-74. PubMed ID: 10962190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related tonotopic map plasticity in the central auditory pathways.
    Harrison RV
    Scand Audiol Suppl; 2001; (53):8-14. PubMed ID: 11409783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-induced degeneration in the brain and representation of inner and outer hair cells.
    Morest DK; Bohne BA
    Hear Res; 1983 Feb; 9(2):145-51. PubMed ID: 6833159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degeneration of axons in the brainstem of the chinchilla after auditory overstimulation.
    Kim J; Morest DK; Bohne BA
    Hear Res; 1997 Jan; 103(1-2):169-91. PubMed ID: 9007583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex.
    Vollmer M; Beitel RE; Schreiner CE; Leake PA
    J Neurophysiol; 2017 Jan; 117(1):47-64. PubMed ID: 27733594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
    Chambers AR; Salazar JJ; Polley DB
    Front Neural Circuits; 2016; 10():72. PubMed ID: 27630546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in projections to the inferior colliculus following early hearing loss in rats.
    Hatano M; Ito M; Yoshizaki T; Kelly JB
    Hear Res; 2012 May; 287(1-2):57-66. PubMed ID: 22726617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of long and short term profound deafness on the responses of inferior colliculus to electrical stimulation of the cochlea.
    Shirane M; Harrison RV
    Acta Otolaryngol Suppl; 1991; 489():32-40. PubMed ID: 1763644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain.
    Qiu C; Salvi R; Ding D; Burkard R
    Hear Res; 2000 Jan; 139(1-2):153-71. PubMed ID: 10601720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss.
    Izquierdo MA; Gutiérrez-Conde PM; Merchán MA; Malmierca MS
    Neuroscience; 2008 Jun; 154(1):355-69. PubMed ID: 18384972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of inferior colliculus neurons to electrical stimulation of the auditory nerve in neonatally deafened cats.
    Shepherd RK; Baxi JH; Hardie NA
    J Neurophysiol; 1999 Sep; 82(3):1363-80. PubMed ID: 10482755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal and transneuronal degeneration of auditory axons in the brainstem after cochlear lesions in the chinchilla: cochleotopic and non-cochleotopic patterns.
    Morest DK; Kim J; Bohne BA
    Hear Res; 1997 Jan; 103(1-2):151-68. PubMed ID: 9007582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.