These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8517365)

  • 1. Poststenotic signal loss in MR angiography: effects of echo time, flow compensation, and fractional echo.
    Evans AJ; Richardson DB; Tien R; MacFall JR; Hedlund LW; Heinz ER; Boyko O; Sostman HD
    AJNR Am J Neuroradiol; 1993; 14(3):721-9. PubMed ID: 8517365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Poststenotic flow in MRT: phantom measurements using spin-echo and gradient-echo sequences].
    Spielmann RP; Thiele F; Heller M; Bücheler E
    Digitale Bilddiagn; 1989 Jun; 9(2):55-8. PubMed ID: 2752673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR imaging of poststenotic flow phenomena: experimental studies.
    Krug B; Kugel H; Friedmann G; Bunke J; van Dijk P; Schmidt R; Hirche HJ
    J Magn Reson Imaging; 1991; 1(5):585-91. PubMed ID: 1790384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valve and great vessel stenosis: assessment with MR jet velocity mapping.
    Kilner PJ; Firmin DN; Rees RS; Martinez J; Pennell DJ; Mohiaddin RH; Underwood SR; Longmore DB
    Radiology; 1991 Jan; 178(1):229-35. PubMed ID: 1984310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delineation of simulated vascular stenosis with Gd-DTPA-enhanced 3D gradient echo MR angiography: an experimental study.
    Mitsuzaki K; Yamashita Y; Onomichi M; Tsuchigame T; Takahashi M
    J Comput Assist Tomogr; 2000; 24(1):77-82. PubMed ID: 10667664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appearance of poststenotic jets in MRI: dependence on flow velocity and on imaging parameters.
    Spielmann RP; Schneider O; Thiele F; Heller M; Bücheler E
    Magn Reson Imaging; 1991; 9(1):67-72. PubMed ID: 2056853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing flow-induced signal loss in MR angiography: an in vitro study.
    Fürst G; Hofer M; Sitzer M; Kahn T; Müller E; Mödder U
    J Comput Assist Tomogr; 1995; 19(5):692-9. PubMed ID: 7560312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of flow through simulated vascular stenoses with gradient echo magnetic resonance imaging.
    Podolak MJ; Hedlund LW; Evans AJ; Herfkens RJ
    Invest Radiol; 1989 Mar; 24(3):184-9. PubMed ID: 2753632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro model of arterial stenosis: correlation of MR signal dephasing and trans-stenotic pressure gradients.
    Mustert BR; Williams DM; Prince MR
    Magn Reson Imaging; 1998 Apr; 16(3):301-10. PubMed ID: 9621971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of turbulent intensity by magnetic resonance imaging.
    Gatenby JC; Gore JC
    J Magn Reson B; 1994 Jun; 104(2):119-26. PubMed ID: 8049864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of turbulence on signal intensity in gradient echo images.
    Evans AJ; Blinder RA; Herfkens RJ; Spritzer CE; Kuethe DO; Fram EK; Hedlund LW
    Invest Radiol; 1988 Jul; 23(7):512-8. PubMed ID: 3170139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental studies on magnetic resonance tomographic and magnetic resonance angiographic imaging of poststenotic flow patterns].
    Krug B; Kugel H; Friedmann G; Bunke J; van Dijk P; Schmidt R; Hirche HJ
    Rofo; 1992 May; 156(5):475-81. PubMed ID: 1596553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging and pulsed Doppler sonography of poststenotic jets: correlation between signal void and flow velocity distribution.
    Spielmann RP; Zhen J; Triebel HJ; Nicolas V; Heller M; Bücheler E
    Magn Reson Imaging; 1992; 10(6):893-901. PubMed ID: 1461087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsatile poststenotic flow studies with laser Doppler anemometry.
    Ahmed SA; Giddens DP
    J Biomech; 1984; 17(9):695-705. PubMed ID: 6238968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of flow patterns in the in vivo post-stenotic velocity field.
    Hutchison KJ; Karpinski E
    Ultrasound Med Biol; 1988; 14(4):269-75. PubMed ID: 2970707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational simulation of turbulent signal loss in 2D time-of-flight magnetic resonance angiograms.
    Siegel JM; Oshinski JN; Pettigrew RI; Ku DN
    Magn Reson Med; 1997 Apr; 37(4):609-14. PubMed ID: 9094084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of the geometry of a stenosis on poststenotic flow in models and poststenotic vibration of canine carotid arteries in vivo.
    Roach MR; Stockley D
    J Biomech; 1980; 13(7):623-34. PubMed ID: 7400190
    [No Abstract]   [Full Text] [Related]  

  • 18. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis.
    Long Q; Xu XY; Ramnarine KV; Hoskins P
    J Biomech; 2001 Oct; 34(10):1229-42. PubMed ID: 11522303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed black blood imaging of vessel stenosis in the presence of pulsatile flow.
    Chien D; Goldmann A; Edelman RR
    J Magn Reson Imaging; 1992; 2(4):437-41. PubMed ID: 1633397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of phantom and computer-simulated MR images of flow in a convergent geometry: implications for improved two-dimensional MR angiography.
    Siegel JM; Oshinski JN; Pettigrew RI; Ku DN
    J Magn Reson Imaging; 1995; 5(6):677-83. PubMed ID: 8748485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.