These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8517728)

  • 1. Production of polyclonal antibodies to the trichothecene mycotoxin 4,15-diacetylnivalenol with the carrier-adjuvant cholera toxin.
    Abouzied MM; Azcona-Olivera JI; Yoshizawa T; Pestka JJ
    Appl Environ Microbiol; 1993 May; 59(5):1264-8. PubMed ID: 8517728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of antibody against deoxyverrucarol.
    Chu FS; Zhang GS; Williams MD; Jarvis BB
    Appl Environ Microbiol; 1984 Oct; 48(4):781-4. PubMed ID: 6508287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of antibodies reactive with fumonisins B1, B2, and B3 by using cholera toxin as the carrier-adjuvant.
    Azcona-Olivera JI; Abouzied MM; Plattner RD; Norred WP; Pestka JJ
    Appl Environ Microbiol; 1992 Jan; 58(1):169-73. PubMed ID: 1539971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and characterization of a monoclonal antibody to the trichothecene mycotoxin diacetoxyscirpenol.
    Pauly JU; Bitter-Suermann D; Dose K
    Biol Chem Hoppe Seyler; 1988 Jun; 369(6):487-92. PubMed ID: 3202955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and characterization of antibodies against nivalenol tetraacetate.
    Wang CR; Chu FS
    Appl Environ Microbiol; 1991 Apr; 57(4):1026-30. PubMed ID: 2059030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol.
    Maragos C; Busman M; Sugita-Konishi Y
    Food Addit Contam; 2006 Aug; 23(8):816-25. PubMed ID: 16807207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant cholera toxin B subunit acts as an adjuvant for the mucosal and systemic responses of mice to mucosally co-administered bovine serum albumin.
    Tochikubo K; Isaka M; Yasuda Y; Kozuka S; Matano K; Miura Y; Taniguchi T
    Vaccine; 1998; 16(2-3):150-5. PubMed ID: 9607023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin immunization made possible by cholera toxin.
    Glenn GM; Rao M; Matyas GR; Alving CR
    Nature; 1998 Feb; 391(6670):851. PubMed ID: 9495336
    [No Abstract]   [Full Text] [Related]  

  • 9. Generation of polyclonal antibodies against nisin: immunization strategies and immunoassay development.
    Suárez AM; Rodríguez JM; Hernández PE; Azcona-Olivera JI
    Appl Environ Microbiol; 1996 Jun; 62(6):2117-21. PubMed ID: 8787409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of mucosal and systemic immune responses by intranasal immunization using recombinant cholera toxin B subunit as an adjuvant.
    Wu HY; Russell MW
    Vaccine; 1998; 16(2-3):286-92. PubMed ID: 9607044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and characterization of a generic antibody against group A trichothecenes.
    Wei RD; Chu FS
    Anal Biochem; 1987 Feb; 160(2):399-408. PubMed ID: 3578769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of polyclonal and monoclonal antibody responses to cholera toxin by the synthetic peptide approach.
    Ghose AC; Karush F
    Mol Immunol; 1988 Mar; 25(3):223-30. PubMed ID: 3374493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes.
    Maeda K; Tanaka Y; Matsuyama M; Sato M; Sadamatsu K; Suzuki T; Matsui K; Nakajima Y; Tokai T; Kanamaru K; Ohsato S; Kobayashi T; Fujimura M; Nishiuchi T; Takahashi-Ando N; Kimura M
    Int J Food Microbiol; 2020 May; 320():108532. PubMed ID: 32004825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and characterization of antibody against diacetoxyscirpenol.
    Chu FS; Liang MY; Zhang GS
    Appl Environ Microbiol; 1984 Oct; 48(4):777-80. PubMed ID: 6508286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and purification of monoclonal and polyclonal antibodies against cholera toxin.
    Chou SF
    Hybrid Hybridomics; 2004 Aug; 23(4):258-61. PubMed ID: 15319074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of nivalenol and nivalenol-3-glucoside in rats.
    Schwartz-Zimmermann HE; Binder SB; Hametner C; Miró-Abella E; Schwarz C; Michlmayr H; Reiterer N; Labudova S; Adam G; Berthiller F
    Toxicol Lett; 2019 May; 306():43-52. PubMed ID: 30769082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a sensitive enzyme-linked immunosorbent assay for the detection of diacetoxyscirpenol.
    Klaffer U; Märtlbauer E; Terplan G
    Int J Food Microbiol; 1988 Feb; 6(1):9-17. PubMed ID: 3079464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution, persistence, and recall of serum and salivary antibody responses to peroral immunization with protein antigen I/II of Streptococcus mutans coupled to the cholera toxin B subunit.
    Russell MW; Wu HY
    Infect Immun; 1991 Nov; 59(11):4061-70. PubMed ID: 1937766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing oral vaccines: induction of systemic and mucosal B-cell and antibody responses to tetanus toxoid by use of cholera toxin as an adjuvant.
    Jackson RJ; Fujihashi K; Xu-Amano J; Kiyono H; Elson CO; McGhee JR
    Infect Immun; 1993 Oct; 61(10):4272-9. PubMed ID: 8406816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved method for production of antibodies against T-2 toxin and diacetoxyscirpenol in rabbits.
    Zhang GS; Schubring SL; Chu FS
    Appl Environ Microbiol; 1986 Jan; 51(1):132-7. PubMed ID: 3954337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.