BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8517744)

  • 21. Preferential uptake of D-alpha-aminoadipate from a racemic mixture by an Alcaligenes denitrificans.
    Wood T; Hartline RA
    Biochim Biophys Acta; 1971; 230(3):446-50. PubMed ID: 5581277
    [No Abstract]   [Full Text] [Related]  

  • 22. Initial reactions in the oxidation of naphthalene by Pseudomonas putida.
    Jeffrey AM; Yeh HJ; Jerina DM; Patel TR; Davey JF; Gibson DT
    Biochemistry; 1975 Feb; 14(3):575-84. PubMed ID: 234247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures.
    Weissenfels WD; Beyer M; Klein J
    Appl Microbiol Biotechnol; 1990 Jan; 32(4):479-84. PubMed ID: 1366395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria.
    Musat F; Galushko A; Jacob J; Widdel F; Kube M; Reinhardt R; Wilkes H; Schink B; Rabus R
    Environ Microbiol; 2009 Jan; 11(1):209-19. PubMed ID: 18811643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of naphthalene by a Pseudomonas strain NGK1.
    Manohar S; Karegoudar TB
    Indian J Exp Biol; 1995 May; 33(5):353-6. PubMed ID: 7558195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rate constants for the gas-phase reactions of a series of alkylnaphthalenes with the nitrate radical.
    Phousongphouang PT; Arey J
    Environ Sci Technol; 2003 Jan; 37(2):308-13. PubMed ID: 12564902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture.
    Safinowski M; Meckenstock RU
    Environ Microbiol; 2006 Feb; 8(2):347-52. PubMed ID: 16423020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation of a phenol-degrading denitrifying bacteria to high concentration of phenol in the medium.
    Son TT; Błaszczyk M; Mycielski R
    Acta Microbiol Pol; 1998; 47(3):297-304. PubMed ID: 9990712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yields of glyoxal and ring-cleavage co-products from the OH radical-initiated reactions of naphthalene and selected alkylnaphthalenes.
    Nishino N; Arey J; Atkinson R
    Environ Sci Technol; 2009 Nov; 43(22):8554-60. PubMed ID: 20028051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens.
    Foght JM; Westlake DW
    Biodegradation; 1996 Aug; 7(4):353-66. PubMed ID: 8987893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Study of the initial reaction of enzymatic oxidation of 1,8-dimethylnaphthalene].
    Tsfasman IM; Starovoĭtov II; Ziakun AM; Skriabin GK
    Biokhimiia; 1976 May; 41(5):864-8. PubMed ID: 15641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broad substrate specificity of naphthalene- and biphenyl-utilizing bacteria.
    Baldwin BR; Mesarch MB; Nies L
    Appl Microbiol Biotechnol; 2000 Jun; 53(6):748-53. PubMed ID: 10919338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorobenzoate catabolism and interactions between Alcaligenes and Pseudomonas species from Bloody Run Creek.
    Wyndham RC; Straus NA
    Arch Microbiol; 1988; 150(3):230-6. PubMed ID: 3178396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175.
    Schraa G; Boone ML; Jetten MS; van Neerven AR; Colberg PJ; Zehnder AJ
    Appl Environ Microbiol; 1986 Dec; 52(6):1374-81. PubMed ID: 3789724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads.
    Stringfellow WT; Aitken MD
    Appl Environ Microbiol; 1995 Jan; 61(1):357-62. PubMed ID: 7887615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Mutants of the plasmid for biodegradation of naphthalene, determining catechol oxidation via the meta-pathway].
    Kulakova AN; Boronin AM
    Mikrobiologiia; 1989; 58(2):298-304. PubMed ID: 2811710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Static and dynamic electronic (hyper)polarizabilities of dimethylnaphthalene isomers: characterization of spatial contributions by density analysis.
    Alparone A
    ScientificWorldJournal; 2013; 2013():832682. PubMed ID: 24288508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture.
    Meckenstock RU; Annweiler E; Michaelis W; Richnow HH; Schink B
    Appl Environ Microbiol; 2000 Jul; 66(7):2743-7. PubMed ID: 10877763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase.
    Hedlund BP; Geiselbrecht AD; Staley JT
    FEMS Microbiol Lett; 2001 Jul; 201(1):47-51. PubMed ID: 11445166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrocarbon cooxidation in microbial systems.
    Raymond RL; Jamison VW; Hudson JO
    Lipids; 1971 Jul; 6(7):453-7. PubMed ID: 4941184
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.