These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8517757)

  • 1. Influence of temperature and substrate concentration on bacterial growth yield in Seine River water batch cultures.
    Barillier A; Garnier J
    Appl Environ Microbiol; 1993 May; 59(5):1678-82. PubMed ID: 8517757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine heterotrophic bacteria in continuous culture, the bacterial carbon growth efficiency, and mineralization at excess substrate and different temperatures.
    Jiménez-Mercado A; Cajal-Medrano R; Maske H
    Microb Ecol; 2007 Jul; 54(1):56-64. PubMed ID: 17264994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial growth and DOC consumption in a tropical coastal lagoon.
    Farjalla VF; Enrich-Prast A; Esteves FA; Cimbleris AC
    Braz J Biol; 2006 May; 66(2A):383-92. PubMed ID: 16862291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower Seine River (France).
    Cébron A; Garnier J
    Water Res; 2005 Dec; 39(20):4979-92. PubMed ID: 16303163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial activity and bacterioplankton diversity in the eutrophic River Warnow--direct measurement of bacterial growth efficiency and its effect on carbon utilization.
    Warkentin M; Freese HM; Schumann R
    Microb Ecol; 2011 Jan; 61(1):190-200. PubMed ID: 20676625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsampling technique for measuring growth of bacterial cultures under high hydrostatic pressure.
    Taylor CD; Jannasch HW
    Appl Environ Microbiol; 1976 Sep; 32(3):355-9. PubMed ID: 791116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy of fresh and accumulated organic matter to bacterial growth.
    Farjalla VF; Marinho CC; Faria BM; Amado AM; Esteves Fde A; Bozelli RL; Giroldo D
    Microb Ecol; 2009 May; 57(4):657-66. PubMed ID: 18985269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations.
    Eiler A; Langenheder S; Bertilsson S; Tranvik LJ
    Appl Environ Microbiol; 2003 Jul; 69(7):3701-9. PubMed ID: 12839735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots.
    Warkentin M; Freese HM; Karsten U; Schumann R
    Appl Environ Microbiol; 2007 Nov; 73(21):6722-9. PubMed ID: 17766446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of methods for measurement of bacterial growth rates in mixed batch cultures.
    Christian RR; Hanson RB; Newell SY
    Appl Environ Microbiol; 1982 May; 43(5):1160-5. PubMed ID: 6179477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater.
    Kragh T; Søndergaard M; Tranvik L
    FEMS Microbiol Ecol; 2008 May; 64(2):230-9. PubMed ID: 18312374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation and use of a low nutrient medium and reduced incubation temperature to study bacterial contamination in the water supply of dental units.
    Williams HN; Quinby H; Romberg E
    Can J Microbiol; 1994 Feb; 40(2):127-31. PubMed ID: 8019935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preliminary studies of psychrophilic lipolytic bacteria in soil and water].
    Breuil C; Gounot AM
    Can J Microbiol; 1972 Sep; 18(9):1445-51. PubMed ID: 4561032
    [No Abstract]   [Full Text] [Related]  

  • 15. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water.
    Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM
    J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient and temperature limitation of bacterioplankton growth in temperate lakes.
    Vrede K
    Microb Ecol; 2005 Feb; 49(2):245-56. PubMed ID: 15965720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water.
    Kaplan LA; Bott TL; Reasoner DJ
    Appl Environ Microbiol; 1993 May; 59(5):1532-9. PubMed ID: 8517748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities.
    Docherty KM; Young KC; Maurice PA; Bridgham SD
    Microb Ecol; 2006 Oct; 52(3):378-88. PubMed ID: 16767520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiology of a northern river: bacterial distribution and relationship to suspended sediment and organic carbon.
    Geesey GG; Costerton JW
    Can J Microbiol; 1979 Sep; 25(9):1058-62. PubMed ID: 540261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on mineralization by heterotrophic bacteria.
    Tison DL; Pope DH
    Appl Environ Microbiol; 1980 Mar; 39(3):584-7. PubMed ID: 6770757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.