These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 8518283)

  • 1. The role of cysteine residues of spinach ferredoxin-NADP+ reductase As assessed by site-directed mutagenesis.
    Aliverti A; Piubelli L; Zanetti G; Lübberstedt T; Herrmann RG; Curti B
    Biochemistry; 1993 Jun; 32(25):6374-80. PubMed ID: 8518283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of serine 96 in the catalytic mechanism of ferredoxin-NADP+ reductase: structure--function relationship as studied by site-directed mutagenesis and X-ray crystallography.
    Aliverti A; Bruns CM; Pandini VE; Karplus PA; Vanoni MA; Curti B; Zanetti G
    Biochemistry; 1995 Jul; 34(26):8371-9. PubMed ID: 7677850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of lysine-88 of spinach ferredoxin-NADP+ reductase in the interaction with ferredoxin.
    Aliverti A; Corrado ME; Zanetti G
    FEBS Lett; 1994 May; 343(3):247-50. PubMed ID: 8174709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the role of the carboxyl-terminal region of ferredoxin-NADP+ reductase by site-directed mutagenesis and deletion analysis.
    Orellano EG; Calcaterra NB; Carrillo N; Ceccarelli EA
    J Biol Chem; 1993 Sep; 268(26):19267-73. PubMed ID: 8366077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.
    Sánchez-Azqueta A; Martínez-Júlvez M; Hervás M; Navarro JA; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):296-305. PubMed ID: 24321506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the function of the invariant glutamyl residue 312 in spinach ferredoxin-NADP+ reductase.
    Aliverti A; Deng Z; Ravasi D; Piubelli L; Karplus PA; Zanetti G
    J Biol Chem; 1998 Dec; 273(51):34008-15. PubMed ID: 9852055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer.
    Martínez-Júlvez M; Medina M; Hurley JK; Hafezi R; Brodie TB; Tollin G; Gómez-Moreno C
    Biochemistry; 1998 Sep; 37(39):13604-13. PubMed ID: 9753447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the NAD(P)H:flavin oxidoreductase from Escherichia coli a member of the ferredoxin-NADP+ reductase family?. Evidence for the catalytic role of serine 49 residue.
    Nivière V; Fieschi F; Décout JL; Fontecave M
    J Biol Chem; 1996 Jul; 271(28):16656-61. PubMed ID: 8663185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations of Glu92 in ferredoxin I from spinach leaves produce proteins fully functional in electron transfer but less efficient in supporting NADP+ photoreduction.
    Piubelli L; Aliverti A; Bellintani F; Zanetti G
    Eur J Biochem; 1996 Mar; 236(2):465-9. PubMed ID: 8612617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase.
    Borges A; Cunningham ML; Tovar J; Fairlamb AH
    Eur J Biochem; 1995 Mar; 228(3):745-52. PubMed ID: 7737173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and structural insight into a role of the re-face Tyr328 residue of the homodimer type ferredoxin-NADP
    Seo D; Muraki N; Kurisu G
    Biochim Biophys Acta Bioenerg; 2020 Mar; 1861(3):148140. PubMed ID: 31838096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of lysine 116 and lysine 244 in the spinach ferredoxin-NADP+ reductase by site-directed mutagenesis.
    Aliverti A; Lübberstedt T; Zanetti G; Herrmann RG; Curti B
    J Biol Chem; 1991 Sep; 266(27):17760-3. PubMed ID: 1917920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase.
    Meints CE; Simtchouk S; Wolthers KR
    FEBS J; 2013 Mar; 280(6):1460-74. PubMed ID: 23332101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.