These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8518735)

  • 1. Modeling the structure of Pyrococcus furiosus rubredoxin by homology to other X-ray structures.
    Wampler JE; Bradley EA; Stewart DE; Adams MW
    Protein Sci; 1993 Apr; 2(4):640-9. PubMed ID: 8518735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.
    Blake PR; Park JB; Zhou ZH; Hare DR; Adams MW; Summers MF
    Protein Sci; 1992 Nov; 1(11):1508-21. PubMed ID: 1303769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.
    Day MW; Hsu BT; Joshua-Tor L; Park JB; Zhou ZH; Adams MW; Rees DC
    Protein Sci; 1992 Nov; 1(11):1494-507. PubMed ID: 1303768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR.
    Blake PR; Park JB; Bryant FO; Aono S; Magnuson JK; Eccleston E; Howard JB; Summers MF; Adams MW
    Biochemistry; 1991 Nov; 30(45):10885-95. PubMed ID: 1932012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with the NMR structure of the zinc-substituted protein.
    Blake PR; Day MW; Hsu BT; Joshua-Tor L; Park JB; Hare DR; Adams MW; Rees DC; Summers MF
    Protein Sci; 1992 Nov; 1(11):1522-5. PubMed ID: 1303770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel parameterization scheme for energy equations and its use to calculate the structure of protein molecules.
    Snow ME
    Proteins; 1993 Feb; 15(2):183-90. PubMed ID: 8441753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure determination of rubredoxin from Desulfovibrio vulgaris Miyazaki F in two crystal forms.
    Misaki S; Morimoto Y; Ogata M; Yagi T; Higuchi Y; Yasuoka N
    Acta Crystallogr D Biol Crystallogr; 1999 Feb; 55(Pt 2):408-13. PubMed ID: 10089348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin.
    Lazaridis T; Lee I; Karplus M
    Protein Sci; 1997 Dec; 6(12):2589-605. PubMed ID: 9416608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.
    Richie KA; Teng Q; Elkin CJ; Kurtz DM
    Protein Sci; 1996 May; 5(5):883-94. PubMed ID: 8732760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin.
    LeMaster DM; Anderson JS; Wang L; Guo Y; Li H; Hernández G
    BMC Struct Biol; 2007 Dec; 7():81. PubMed ID: 18053245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rubredoxin from Desulfovibrio gigas. A molecular model of the oxidized form at 1.4 A resolution.
    Frey M; Sieker L; Payan F; Haser R; Bruschi M; Pepe G; LeGall J
    J Mol Biol; 1987 Oct; 197(3):525-41. PubMed ID: 3441010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An NMR structural study of nickel-substituted rubredoxin.
    Goodfellow BJ; Duarte IC; Macedo AL; Volkman BF; Nunes SG; Moura I; Markley JL; Moura JJ
    J Biol Inorg Chem; 2010 Mar; 15(3):409-20. PubMed ID: 19997764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neutron crystallographic analysis of a rubredoxin mutant at 1.6 A resolution.
    Chatake T; Kurihara K; Tanaka I; Tsyba I; Bau R; Jenney FE; Adams MW; Niimura N
    Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1364-73. PubMed ID: 15272158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of a zinc substituted eukaryotic rubredoxin from the cryptomonad alga Guillardia theta.
    Schweimer K; Hoffmann S; Wastl J; Maier UG; Rösch P; Sticht H
    Protein Sci; 2000 Aug; 9(8):1474-86. PubMed ID: 10975569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein contributions to redox potentials of homologous rubredoxins: an energy minimization study.
    Swartz PD; Ichiye T
    Biophys J; 1997 Nov; 73(5):2733-41. PubMed ID: 9370467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions.
    Yelle RB; Park NS; Ichiye T
    Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bonds in rubredoxins from mesophilic and hyperthermophilic organisms.
    Bougault CM; Eidsness MK; Prestegard JH
    Biochemistry; 2003 Apr; 42(15):4357-72. PubMed ID: 12693931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structure of Desulfovibrio gigas rubredoxin: a model for studying protein stabilization by compatible solutes.
    Lamosa P; Brennan L; Vis H; Turner DL; Santos H
    Extremophiles; 2001 Oct; 5(5):303-11. PubMed ID: 11699644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting contributions to the thermostability of Pyrococcus furiosus rubredoxin: beta-sheet chimeras.
    Eidsness MK; Richie KA; Burden AE; Kurtz DM; Scott RA
    Biochemistry; 1997 Aug; 36(34):10406-13. PubMed ID: 9265620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of the redox potential of rubredoxin from Pyrococcus furiosus: a molecular dynamics study.
    Swartz PD; Ichiye T
    Biochemistry; 1996 Oct; 35(43):13772-9. PubMed ID: 8901519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.