These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 8519778)
1. Kinetic analysis of cAMP-dependent protein kinase: mutations at histidine 87 affect peptide binding and pH dependence. Cox S; Taylor SS Biochemistry; 1995 Dec; 34(49):16203-9. PubMed ID: 8519778 [TBL] [Abstract][Full Text] [Related]
2. Holoenzyme interaction sites in the cAMP-dependent protein kinase. Histidine 87 in the catalytic subunit complements serine 99 in the type I regulatory subunit. Cox S; Taylor SS J Biol Chem; 1994 Sep; 269(36):22614-22. PubMed ID: 8077212 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase. Adams JA; McGlone ML; Gibson R; Taylor SS Biochemistry; 1995 Feb; 34(8):2447-54. PubMed ID: 7873523 [TBL] [Abstract][Full Text] [Related]
4. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase. Adams JA; Taylor SS Protein Sci; 1993 Dec; 2(12):2177-86. PubMed ID: 8298463 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine. Narayana N; Cox S; Shaltiel S; Taylor SS; Xuong N Biochemistry; 1997 Apr; 36(15):4438-48. PubMed ID: 9109651 [TBL] [Abstract][Full Text] [Related]
6. Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: role in catalysis, P-site specificity, and interaction with inhibitors. Aimes RT; Hemmer W; Taylor SS Biochemistry; 2000 Jul; 39(28):8325-32. PubMed ID: 10889042 [TBL] [Abstract][Full Text] [Related]
7. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Herberg FW; Taylor SS; Dostmann WR Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131 [TBL] [Abstract][Full Text] [Related]
8. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy. Lew J; Taylor SS; Adams JA Biochemistry; 1997 Jun; 36(22):6717-24. PubMed ID: 9184152 [TBL] [Abstract][Full Text] [Related]
9. Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Herberg FW; Zimmermann B; McGlone M; Taylor SS Protein Sci; 1997 Mar; 6(3):569-79. PubMed ID: 9070439 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of activation of cAMP-dependent protein kinase: in Mucor rouxii the apparent specific activity of the cAMP-activated holoenzyme is different than that of its free catalytic subunit. Zaremberg V; Donella-Deana A; Moreno S Arch Biochem Biophys; 2000 Sep; 381(1):74-82. PubMed ID: 11019822 [TBL] [Abstract][Full Text] [Related]
11. Identification of electrostatic interaction sites between the regulatory and catalytic subunits of cyclic AMP-dependent protein kinase. Gibson RM; Ji-Buechler Y; Taylor SS Protein Sci; 1997 Sep; 6(9):1825-34. PubMed ID: 9300482 [TBL] [Abstract][Full Text] [Related]
12. Rate-determining steps for tyrosine phosphorylation by the kinase domain of v-fps. Wang C; Lee TR; Lawrence DS; Adams JA Biochemistry; 1996 Feb; 35(5):1533-9. PubMed ID: 8634284 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation of peptide substrates for the catalytic subunit of cAMP-dependent protein kinase. Adams JA; Taylor SS J Biol Chem; 1993 Apr; 268(11):7747-52. PubMed ID: 8463304 [TBL] [Abstract][Full Text] [Related]
14. High affinity binding of the heat-stable protein kinase inhibitor to the catalytic subunit of cAMP-dependent protein kinase is selectively abolished by mutation of Arg133. Wen W; Taylor SS J Biol Chem; 1994 Mar; 269(11):8423-30. PubMed ID: 8132568 [TBL] [Abstract][Full Text] [Related]
15. Energetic limits of phosphotransfer in the catalytic subunit of cAMP-dependent protein kinase as measured by viscosity experiments. Adams JA; Taylor SS Biochemistry; 1992 Sep; 31(36):8516-22. PubMed ID: 1390637 [TBL] [Abstract][Full Text] [Related]
16. Catalytic subunit of cAMP-dependent protein kinase: electrostatic features and peptide recognition. Tsigelny I; Grant BD; Taylor SS; Ten Eyck LF Biopolymers; 1996 Sep; 39(3):353-65. PubMed ID: 8756515 [TBL] [Abstract][Full Text] [Related]
17. Site-specific mutagenesis of Escherichia coli asparaginase II. None of the three histidine residues is required for catalysis. Wehner A; Harms E; Jennings MP; Beacham IR; Derst C; Bast P; Röhm KH Eur J Biochem; 1992 Sep; 208(2):475-80. PubMed ID: 1521538 [TBL] [Abstract][Full Text] [Related]
18. A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility. Narayana N; Cox S; Nguyen-huu X; Ten Eyck LF; Taylor SS Structure; 1997 Jul; 5(7):921-35. PubMed ID: 9261084 [TBL] [Abstract][Full Text] [Related]
19. Examination of an active-site electrostatic node in the cAMP-dependent protein kinase catalytic subunit. Grant BD; Tsigelny I; Adams JA; Taylor SS Protein Sci; 1996 Jul; 5(7):1316-24. PubMed ID: 8819164 [TBL] [Abstract][Full Text] [Related]
20. Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques. Grant BD; Adams JA Biochemistry; 1996 Feb; 35(6):2022-9. PubMed ID: 8639687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]