BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8519931)

  • 1. Water absorption characteristics of modified hydroxyapatite bone cements.
    Deb S; Braden M; Bonfield W
    Biomaterials; 1995 Sep; 16(14):1095-100. PubMed ID: 8519931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water absorption characteristics of dental composites incorporating hydroxyapatite filler.
    Santos C; Clarke RL; Braden M; Guitian F; Davy KW
    Biomaterials; 2002 Apr; 23(8):1897-904. PubMed ID: 11950060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations.
    Cisneros-Pineda OG; Herrera Kao W; Loría-Bastarrachea MI; Veranes-Pantoja Y; Cauich-Rodríguez JV; Cervantes-Uc JM
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():157-63. PubMed ID: 24857478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of hydroxyapatite filled 4-META/MMA-TBB adhesive bone cement in vitro and in vivo environment.
    Lee RR; Ogiso M; Watanabe A; Ishihara K
    J Biomed Mater Res; 1997; 38(1):11-6. PubMed ID: 9086412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of two hydrophilic monomers on the water uptake of a heterocyclic methacrylate system.
    Patel MP; Johnstone MB; Hughes FJ; Braden M
    Biomaterials; 2001 Jan; 22(1):81-6. PubMed ID: 11085387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: influence of a silane coupling agent.
    Harper EJ; Braden M; Bonfield W
    J Mater Sci Mater Med; 2000 Aug; 11(8):491-7. PubMed ID: 15347999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New radiopaque acrylic bone cement. II. Acrylic bone cement with bromine-containing monomer.
    Rusu MC; Ichim IC; Popa M; Rusu M
    J Mater Sci Mater Med; 2008 Jul; 19(7):2609-17. PubMed ID: 18197369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoride ion release from two methacrylate polymer systems.
    Patel MP; Pearson GJ; Braden M; Mirza MA
    Biomaterials; 1998 Nov; 19(21):1911-7. PubMed ID: 9863524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of bone and hydroxyapatite filled 4-META/MMA-TBB bone cement in in vitro and in vivo environments.
    Lee RR
    J Philipp Dent Assoc; 1996; 48(1):5-12. PubMed ID: 9462058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of short and medium-term water immersion on the hydrolytic stability of novel low-shrink dental composites.
    Palin WM; Fleming GJ; Burke FJ; Marquis PM; Randall RC
    Dent Mater; 2005 Sep; 21(9):852-63. PubMed ID: 15935464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen transport through methacrylate-based hydrogels with potential biological capability.
    Compañ V; San Román J; Riande E; Sørensen TS; Levenfeld B; Andrio A
    Biomaterials; 1996 Jun; 17(12):1243-9. PubMed ID: 8799509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of adhesive bone cement containing hydroxyapatite particles.
    Morita S; Furuya K; Ishihara K; Nakabayashi N
    Biomaterials; 1998 Sep; 19(17):1601-6. PubMed ID: 9830986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the long-term creep behaviour of hydroxyapatite-filled polyethylmethacrylate bone cements.
    Arnold JC; Venditti NP
    J Mater Sci Mater Med; 2007 Sep; 18(9):1849-58. PubMed ID: 17492254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of bone cements prepared with functionalized methacrylates and hydroxyapatite.
    Islas-Blancas ME; Cervantes JM; Vargas-Coronado R; Cauich-Rodríguez JV; Vera-Graziano R; Martinez-Richa A
    J Biomater Sci Polym Ed; 2001; 12(8):893-910. PubMed ID: 11718483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water sorption characteristics of resin-modified glass-ionomer cements.
    Kanchanavasita W; Anstice HM; Pearson GJ
    Biomaterials; 1997 Feb; 18(4):343-9. PubMed ID: 9068897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(N-vinyl-2-pyrrolidone) additive on release mechanism and kinetics.
    Frutos P; Diez-Peña E; Frutos G; Barrales-Rienda JM
    Biomaterials; 2002 Sep; 23(18):3787-97. PubMed ID: 12164182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of new bone cement utilizing low toxicity monomers.
    Ono S; Kadoma Y; Morita S; Takakuda K
    J Med Dent Sci; 2008 Jun; 55(2):189-96. PubMed ID: 19697507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid.
    Sa Y; Yang F; de Wijn JR; Wang Y; Wolke JG; Jansen JA
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():190-8. PubMed ID: 26838840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone Response to Porous Poly(methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model.
    Sa Y; Yu N; Wolke JGC; Chanchareonsook N; Goh BT; Wang Y; Yang F; Jansen JA
    Tissue Eng Part C Methods; 2017 May; 23(5):262-273. PubMed ID: 28372521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.