These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8519931)

  • 21. Water absorption and surface properties of novel poly(ethylmethacrylate) polymer systems for use in bone and cartilage repair.
    Hutcheon GA; Messiou C; Wyre RM; Davies MC; Downes S
    Biomaterials; 2001 Apr; 22(7):667-76. PubMed ID: 11246960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Failure and behavior in water of hydroxyapatite whisker-reinforced bis-GMA-based resin composites.
    Zhang H; Darvell BW
    J Mech Behav Biomed Mater; 2012 Jun; 10():39-47. PubMed ID: 22520417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface characterisation of various bone cements prepared with functionalised methacrylates/bioactive ceramics in relation to HOB behaviour.
    Salih V; Mordan N; Abou Neel EA; Armitage DA; Jones FH; Knowles JC; Nazhat SN; Vargas-Coronado R; Cauich-Rodriguez JV
    Acta Biomater; 2006 Mar; 2(2):143-54. PubMed ID: 16701872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BoneSource solidification: a comparison between water and sodium phosphate as the solvent.
    Barone CM; Jimenez DF; Boschert MT; Beckert BW
    J Craniofac Surg; 2000 Sep; 11(5):495-7; discussion 498-9. PubMed ID: 11314071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR imaging of the diffusion of water at 310 K into semi-IPNs of PEM and poly(HEMA-co-THFMA) with and without chlorhexidine diacetate.
    Chowdhury MA; Hill DJ; Whittaker AK; Braden M; Patel MP
    Biomacromolecules; 2004; 5(4):1405-11. PubMed ID: 15244458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of the shrinkage of commercial bone cements when mixed under vacuum.
    Kwong FN; Power RA
    J Bone Joint Surg Br; 2006 Jan; 88(1):120-2. PubMed ID: 16365134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement.
    Gonçalves G; Cruz SM; Ramalho A; Grácio J; Marques PA
    Nanoscale; 2012 Apr; 4(9):2937-45. PubMed ID: 22499394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxyapatite/PMMA composites as bone cements.
    Chu KT; Oshida Y; Hancock EB; Kowolik MJ; Barco T; Zunt SL
    Biomed Mater Eng; 2004; 14(1):87-105. PubMed ID: 14757957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydration mechanism of a novel PCCP + DCPA cement system.
    Wang X; Ye J; Wang Y
    J Mater Sci Mater Med; 2008 Feb; 19(2):813-6. PubMed ID: 17665134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymerization kinetics, glass transition temperature and creep of acrylic bone cements.
    Migliaresi C; Fambri L; Kolarik J
    Biomaterials; 1994 Sep; 15(11):875-81. PubMed ID: 7833433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water uptake and release from iodine-containing bone cement.
    Kjellson F; Brudeli B; McCarthy ID; Lidgren L
    J Biomed Mater Res A; 2004 Nov; 71(2):292-8. PubMed ID: 15386486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A proposed specification for acrylic bone cement.
    Haas SS; Dickson G; Brauer GM
    J Biomed Mater Res; 1975 Jul; 9(4):105-17. PubMed ID: 1176496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of high-viscosity, two-paste bioactive bone cements.
    Deb S; Aiyathurai L; Roether JA; Luklinska ZB
    Biomaterials; 2005 Jun; 26(17):3713-8. PubMed ID: 15621261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bond degradation behavior of self-adhesive cement and conventional resin cements bonded to silanized ceramic.
    Liu Q; Meng X; Yoshida K; Luo X
    J Prosthet Dent; 2011 Mar; 105(3):177-84. PubMed ID: 21356410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterocyclic methacrylates for clinical applications. III. Water absorption characteristics.
    Patel MP; Braden M
    Biomaterials; 1991 Sep; 12(7):653-7. PubMed ID: 1742409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ analysis of the degree of polymerization of bone cement by using FT-Raman spectroscopy.
    Rehman I; Harper EJ; Bonfield W
    Biomaterials; 1996 Aug; 17(16):1615-9. PubMed ID: 8842366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of the miscibility of poly(styrene-co-4-vinylbenzoic acid) with poly(ethyl methacrylate) or with poly[ethyl methacrylate-co-(2-N,N-dimethylaminoethyl) methacrylate] by inverse gas chromatography.
    Ourdani S; Amrani F
    J Chromatogr A; 2002 Sep; 969(1-2):287-99. PubMed ID: 12385399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of the mineral-organic linkage in an apatitic reinforced bone cement.
    Dandurand J; Delpech V; Lebugle A; Lamure A; Lacabanne C
    J Biomed Mater Res; 1990 Oct; 24(10):1377-84. PubMed ID: 2283354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.