These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8519979)

  • 1. Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs.
    Li YX; Rinzel J; Vergara L; Stojilković SS
    Biophys J; 1995 Sep; 69(3):785-95. PubMed ID: 8519979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing and refilling calcium stores in an excitable cell.
    Li YX; Stojilković SS; Keizer J; Rinzel J
    Biophys J; 1997 Mar; 72(3):1080-91. PubMed ID: 9138557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous and agonist-induced calcium oscillations in pituitary gonadotrophs.
    Iida T; Stojilković SS; Izumi S; Catt KJ
    Mol Endocrinol; 1991 Jul; 5(7):949-58. PubMed ID: 1944300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of action potentials in a mathematical model of corticotrophs.
    LeBeau AP; Robson AB; McKinnon AE; Donald RA; Sneyd J
    Biophys J; 1997 Sep; 73(3):1263-75. PubMed ID: 9284294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane potential regulates inositol 1,4,5-trisphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs.
    Kukuljan M; Rojas E; Catt KJ; Stojilkovic SS
    J Biol Chem; 1994 Feb; 269(7):4860-5. PubMed ID: 8106457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GnRH-induced cytosolic calcium oscillations in pituitary gonadotrophs: phase resetting by membrane depolarization.
    Vergara LA; Stojilkovic SS; Rojas E
    Biophys J; 1995 Oct; 69(4):1606-14. PubMed ID: 8534831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of calcium spiking frequency in pituitary gonadotrophs by a single-pool cytoplasmic oscillator.
    Stojilkovic SS; Tomic M; Kukuljan M; Catt KJ
    Mol Pharmacol; 1994 May; 45(5):1013-21. PubMed ID: 8190091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes.
    Kuryshev YA; Childs GV; Ritchie AK
    Endocrinology; 1996 Jun; 137(6):2269-77. PubMed ID: 8641175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels.
    Van Goor F; Krsmanovic LZ; Catt KJ; Stojilkovic SS
    Mol Endocrinol; 1999 Apr; 13(4):587-603. PubMed ID: 10194765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel calcium-activated apamin-insensitive potassium current in pituitary gonadotrophs.
    Vergara L; Rojas E; Stojilkovic SS
    Endocrinology; 1997 Jul; 138(7):2658-64. PubMed ID: 9202201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous and corticotropin-releasing factor-induced cytosolic calcium transients in corticotrophs.
    Guérineau N; Corcuff JB; Tabarin A; Mollard P
    Endocrinology; 1991 Jul; 129(1):409-20. PubMed ID: 1647305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling.
    Stojilkovic SS; Zemkova H; Van Goor F
    Trends Endocrinol Metab; 2005; 16(4):152-9. PubMed ID: 15860411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of cytoplasmic calcium and membrane potential oscillations maintains calcium signaling in pituitary gonadotrophs.
    Stojilković SS; Kukuljan M; Iida T; Rojas E; Catt KJ
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4081-5. PubMed ID: 1373893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-clamp analysis and computational model of dopaminergic neurons from mouse retina.
    Xiao J; Cai Y; Yen J; Steffen M; Baxter DA; Feigenspan A; Marshak D
    Vis Neurosci; 2004; 21(6):835-49. PubMed ID: 15733339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous recordings of cytosolic Ca2+ level and membrane potential and current during the response to thyroliberin in clonal rat anterior pituitary cells.
    Iijima T; Sand O; Sekiguchi T; Matsumoto G
    Acta Physiol Scand; 1990 Oct; 140(2):269-78. PubMed ID: 2176434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of voltage-gated Na+ and Ca2+ channels in gonadotropin-releasing hormone-induced membrane potential changes in identified rat gonadotropes.
    Tse A; Hille B
    Endocrinology; 1993 Apr; 132(4):1475-81. PubMed ID: 8384989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of purinergic receptor channels and their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels in plasma membrane- and endoplasmic reticulum-derived calcium oscillations.
    Tomić M; Jobin RM; Vergara LA; Stojilkovic SS
    J Biol Chem; 1996 Aug; 271(35):21200-8. PubMed ID: 8702891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Ca(2+)-ATPase in spontaneous oscillations of cytosolic free Ca2+ in GH3 rat pituitary cells.
    Hirono M; Takamura K; Ito Y; Nakano Y; Chikaoka Y; Suzuki N; Yoshioka T
    Cell Calcium; 1999 Feb; 25(2):125-35. PubMed ID: 10326679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental and physiological aspects of Ca2+ signaling in agonist-stimulated pituitary gonadotrophs.
    Tomić M; Cesnajaj M; Catt KJ; Stojilkovic SS
    Endocrinology; 1994 Nov; 135(5):1762-71. PubMed ID: 7956899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropeptide-Y enhances luteinizing hormone (LH)-releasing hormone-induced LH release and elevations in cytosolic Ca2+ in rat anterior pituitary cells: evidence for involvement of extracellular Ca2+ influx through voltage-sensitive channels.
    Crowley WR; Shah GV; Carroll BL; Kennedy D; Dockter ME; Kalra SP
    Endocrinology; 1990 Sep; 127(3):1487-94. PubMed ID: 1696888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.