BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 8519980)

  • 1. Kinetics of microtubule catastrophe assessed by probabilistic analysis.
    Odde DJ; Cassimeris L; Buettner HM
    Biophys J; 1995 Sep; 69(3):796-802. PubMed ID: 8519980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.
    Walker RA; O'Brien ET; Pryer NK; Soboeiro MF; Voter WA; Erickson HP; Salmon ED
    J Cell Biol; 1988 Oct; 107(4):1437-48. PubMed ID: 3170635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into cytoskeletal behavior from computational modeling of dynamic microtubules in a cell-like environment.
    Gregoretti IV; Margolin G; Alber MS; Goodson HV
    J Cell Sci; 2006 Nov; 119(Pt 22):4781-8. PubMed ID: 17093268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stathmin family protein SCG10 differentially regulates the plus and minus end dynamics of microtubules at steady state in vitro: implications for its role in neurite outgrowth.
    Manna T; Grenningloh G; Miller HP; Wilson L
    Biochemistry; 2007 Mar; 46(11):3543-52. PubMed ID: 17311410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of microtubule dynamic instability in vitro by differentially phosphorylated stathmin.
    Manna T; Thrower DA; Honnappa S; Steinmetz MO; Wilson L
    J Biol Chem; 2009 Jun; 284(23):15640-9. PubMed ID: 19359244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule treadmilling in vitro investigated by fluorescence speckle and confocal microscopy.
    Grego S; Cantillana V; Salmon ED
    Biophys J; 2001 Jul; 81(1):66-78. PubMed ID: 11423395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro.
    Vitre B; Coquelle FM; Heichette C; Garnier C; Chrétien D; Arnal I
    Nat Cell Biol; 2008 Apr; 10(4):415-21. PubMed ID: 18364701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unambiguous classification of microtubule-ends in vitro: dynamic properties of the plus- and minus-ends.
    Kowalski RJ; Williams RC
    Cell Motil Cytoskeleton; 1993; 26(4):282-90. PubMed ID: 8299144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev.
    Yenjerla M; Lopus M; Wilson L
    Methods Cell Biol; 2010; 95():189-206. PubMed ID: 20466136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the diffusion-limited rate of microtubule assembly.
    Odde DJ
    Biophys J; 1997 Jul; 73(1):88-96. PubMed ID: 9199774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover.
    Vasquez RJ; Gard DL; Cassimeris L
    J Cell Biol; 1994 Nov; 127(4):985-93. PubMed ID: 7962080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study.
    Mandelkow EM; Mandelkow E; Milligan RA
    J Cell Biol; 1991 Sep; 114(5):977-91. PubMed ID: 1874792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of magnesium on the dynamic instability of individual microtubules.
    O'Brien ET; Salmon ED; Walker RA; Erickson HP
    Biochemistry; 1990 Jul; 29(28):6648-56. PubMed ID: 2397205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice.
    Martin SR; Schilstra MJ; Bayley PM
    Biophys J; 1993 Aug; 65(2):578-96. PubMed ID: 8218889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of the dynamic instability of individual microtubules by dark-field microscopy.
    Horio T; Hotani H
    Nature; 1986 Jun 5-11; 321(6070):605-7. PubMed ID: 3713844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of microtubule dynamic instability in vivo by brain microtubule associated proteins.
    Dhamodharan R; Wadsworth P
    J Cell Sci; 1995 Apr; 108 ( Pt 4)():1679-89. PubMed ID: 7615685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural transitions at microtubule ends correlate with their dynamic properties in Xenopus egg extracts.
    Arnal I; Karsenti E; Hyman AA
    J Cell Biol; 2000 May; 149(4):767-74. PubMed ID: 10811818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic microtubules slow down during their shrinkage phase.
    Luchniak A; Kuo YW; McGuinness C; Sutradhar S; Orbach R; Mahamdeh M; Howard J
    Biophys J; 2023 Feb; 122(4):616-623. PubMed ID: 36659852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low potency of taxol at microtubule minus ends: implications for its antimitotic and therapeutic mechanism.
    Derry WB; Wilson L; Jordan MA
    Cancer Res; 1998 Mar; 58(6):1177-84. PubMed ID: 9515803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How calcium causes microtubule depolymerization.
    O'Brien ET; Salmon ED; Erickson HP
    Cell Motil Cytoskeleton; 1997; 36(2):125-35. PubMed ID: 9015201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.