These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8519984)

  • 21. Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations.
    Kepper N; Ettig R; Stehr R; Marnach S; Wedemann G; Rippe K
    Biopolymers; 2011 Jul; 95(7):435-47. PubMed ID: 21294108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro reconstitution and analysis of mononucleosomes containing defined DNAs and proteins.
    Hayes JJ; Lee KM
    Methods; 1997 May; 12(1):2-9. PubMed ID: 9169189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatin organization - the 30 nm fiber.
    Grigoryev SA; Woodcock CL
    Exp Cell Res; 2012 Jul; 318(12):1448-55. PubMed ID: 22394510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y; Squier TC
    Biochemistry; 1996 May; 35(21):6815-27. PubMed ID: 8639633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model studies of chromatin structure based on X-ray diffraction data.
    Subirana JA; Martínez AB
    Nucleic Acids Res; 1976 Nov; 3(11):3025-42. PubMed ID: 1005111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydration of nucleic acid fragments: comparison of theory and experiment for high-resolution crystal structures of RNA, DNA, and DNA-drug complexes.
    Hummer G; García AE; Soumpasis DM
    Biophys J; 1995 May; 68(5):1639-52. PubMed ID: 7542034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA folding: structural and mechanical properties of the two-angle model for chromatin.
    Schiessel H; Gelbart WM; Bruinsma R
    Biophys J; 2001 Apr; 80(4):1940-56. PubMed ID: 11259307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling salt-mediated electrostatics of macromolecules: the discrete surface charge optimization algorithm and its application to the nucleosome.
    Beard DA; Schlick T
    Biopolymers; 2001 Jan; 58(1):106-15. PubMed ID: 11072233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physics in the cell: spring theory.
    Maher B
    Nature; 2007 Aug; 448(7157):984-6. PubMed ID: 17728734
    [No Abstract]   [Full Text] [Related]  

  • 32. How the chromatin fiber deals with topological constraints.
    Barbi M; Mozziconacci J; Victor JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031910. PubMed ID: 15903462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complexity of protein folding.
    Fraenkel AS
    Bull Math Biol; 1993 Nov; 55(6):1199-210. PubMed ID: 8281132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The controversial 30 nm chromatin fibre.
    Staynov DZ
    Bioessays; 2008 Oct; 30(10):1003-9. PubMed ID: 18798528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Cu(II) complexes with biomacromolecules. The use of Cu(II) ions as a structural spin label].
    Chikvaidze EN; Kirikashvili IN; Mrevlishvili GM
    Biofizika; 1997; 42(1):34-8. PubMed ID: 9181799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulation of chromatin stretching.
    Aumann F; Lankas F; Caudron M; Langowski J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041927. PubMed ID: 16711856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational modeling of the chromatin fiber.
    Langowski J; Heermann DW
    Semin Cell Dev Biol; 2007 Oct; 18(5):659-67. PubMed ID: 17936653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.
    Takada S; Kanada R; Tan C; Terakawa T; Li W; Kenzaki H
    Acc Chem Res; 2015 Dec; 48(12):3026-35. PubMed ID: 26575522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Interconnection of hierarchical compactization levels as the basis for functional organization of chromatin].
    Kraevskiĭ VA; Panin VM
    Biofizika; 1997; 42(4):864-73. PubMed ID: 9410016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
    Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G
    Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.