These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 8519992)
41. Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses. Malinin VS; Lentz BR Biophys J; 2004 May; 86(5):2951-64. PubMed ID: 15111411 [TBL] [Abstract][Full Text] [Related]
42. Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Kozlovsky Y; Chernomordik LV; Kozlov MM Biophys J; 2002 Nov; 83(5):2634-51. PubMed ID: 12414697 [TBL] [Abstract][Full Text] [Related]
43. Molecular view of hexagonal phase formation in phospholipid membranes. Marrink SJ; Mark AE Biophys J; 2004 Dec; 87(6):3894-900. PubMed ID: 15377528 [TBL] [Abstract][Full Text] [Related]
44. Hemifusion between cells expressing hemagglutinin of influenza virus and planar membranes can precede the formation of fusion pores that subsequently fully enlarge. Razinkov VI; Melikyan GB; Cohen FS Biophys J; 1999 Dec; 77(6):3144-51. PubMed ID: 10585935 [TBL] [Abstract][Full Text] [Related]
45. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles. Wu H; Zheng L; Lentz BR Biochemistry; 1996 Sep; 35(38):12602-11. PubMed ID: 8823198 [TBL] [Abstract][Full Text] [Related]
46. Probing the mechanism of fusion in a two-dimensional computer simulation. Chanturiya A; Scaria P; Kuksenok O; Woodle MC Biophys J; 2002 Jun; 82(6):3072-80. PubMed ID: 12023230 [TBL] [Abstract][Full Text] [Related]
47. Molecular dynamics simulation of the evolution of hydrophobic defects in one monolayer of a phosphatidylcholine bilayer: relevance for membrane fusion mechanisms. Tieleman DP; Bentz J Biophys J; 2002 Sep; 83(3):1501-10. PubMed ID: 12202375 [TBL] [Abstract][Full Text] [Related]
48. Point-like protrusion as a prestalk intermediate in membrane fusion pathway. Efrat A; Chernomordik LV; Kozlov MM Biophys J; 2007 Apr; 92(8):L61-3. PubMed ID: 17277178 [TBL] [Abstract][Full Text] [Related]
50. Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. Hamai C; Yang T; Kataoka S; Cremer PS; Musser SM Biophys J; 2006 Feb; 90(4):1241-8. PubMed ID: 16299084 [TBL] [Abstract][Full Text] [Related]
51. Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion. Basanez G; Nieva JL; Rivas E; Alonso A; Goni FM Biophys J; 1996 May; 70(5):2299-306. PubMed ID: 9172753 [TBL] [Abstract][Full Text] [Related]
52. Lipid monolayer spontaneous curvatures: A collection of published values. Dymond MK Chem Phys Lipids; 2021 Sep; 239():105117. PubMed ID: 34265278 [TBL] [Abstract][Full Text] [Related]
53. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion. Ryham RJ; Klotz TS; Yao L; Cohen FS Biophys J; 2016 Mar; 110(5):1110-24. PubMed ID: 26958888 [TBL] [Abstract][Full Text] [Related]
54. A rhombohedral phase of lipid containing a membrane fusion intermediate structure. Yang L; Huang HW Biophys J; 2003 Mar; 84(3):1808-17. PubMed ID: 12609882 [TBL] [Abstract][Full Text] [Related]
55. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. Cohen FS; Akabas MH; Zimmerberg J; Finkelstein A J Cell Biol; 1984 Mar; 98(3):1054-62. PubMed ID: 6699081 [TBL] [Abstract][Full Text] [Related]
56. Lipid rafts reconstituted in model membranes. Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302 [TBL] [Abstract][Full Text] [Related]