These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8520474)

  • 1. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A.
    Oblatt-Montal M; Yamazaki M; Nelson R; Montal M
    Protein Sci; 1995 Aug; 4(8):1490-7. PubMed ID: 8520474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins.
    Montal MS; Blewitt R; Tomich JM; Montal M
    FEBS Lett; 1992 Nov; 313(1):12-8. PubMed ID: 1385218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. I. Transmembrane segment M2 of the nicotinic cholinergic receptor channel is a key pore-lining structure.
    Oblatt-Montal M; Bühler LK; Iwamoto T; Tomich JM; Montal M
    J Biol Chem; 1993 Jul; 268(20):14601-7. PubMed ID: 7686900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel protein engineering: synthetic 22-mer peptide from the primary structure of the voltage-sensitive sodium channel forms ionic channels in lipid bilayers.
    Oiki S; Danho W; Montal M
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2393-7. PubMed ID: 2451248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. II. Transmembrane segment M2 of the brain glycine receptor is a plausible candidate for the pore-lining structure.
    Reddy GL; Iwamoto T; Tomich JM; Montal M
    J Biol Chem; 1993 Jul; 268(20):14608-15. PubMed ID: 7686901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating and permeability of ion channels produced by botulinum toxin types A and E in PC12 cell membranes.
    Sheridan RE
    Toxicon; 1998 May; 36(5):703-17. PubMed ID: 9655631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels.
    Grove A; Tomich JM; Iwamoto T; Montal M
    Protein Sci; 1993 Nov; 2(11):1918-30. PubMed ID: 7505682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes.
    Hoch DH; Romero-Mira M; Ehrlich BE; Finkelstein A; DasGupta BR; Simpson LL
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1692-6. PubMed ID: 3856850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion-channel properties of mastoparan, a 14-residue peptide from wasp venom, and of MP3, a 12-residue analogue.
    Mellor IR; Sansom MS
    Proc R Soc Lond B Biol Sci; 1990 Apr; 239(1296):383-400. PubMed ID: 1694295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the channel properties of tetanus toxin in planar lipid bilayers.
    Gambale F; Montal M
    Biophys J; 1988 May; 53(5):771-83. PubMed ID: 2455552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane segment M2 of glycine receptor as a model system for the pore-forming structure of ion channels.
    Bednarczyk P; Szewczyk A; Dołowy K
    Acta Biochim Pol; 2002; 49(4):869-75. PubMed ID: 12545193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channel formation by antiapoptotic protein Bcl-2.
    Schendel SL; Xie Z; Montal MO; Matsuyama S; Montal M; Reed JC
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5113-8. PubMed ID: 9144199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pf3 coat protein forms voltage-gated ion channels in planar lipid bilayers.
    Pawlak M; Kuhn A; Vogel H
    Biochemistry; 1994 Jan; 33(1):283-90. PubMed ID: 7506930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-assembled melittin: structural and functional characterization of a designed, synthetic channel-forming protein.
    Pawlak M; Meseth U; Dhanapal B; Mutter M; Vogel H
    Protein Sci; 1994 Oct; 3(10):1788-805. PubMed ID: 7531528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis and functional characterization of a pentameric channel protein that mimics the presumed pore structure of the nicotinic cholinergic receptor.
    Montal MO; Iwamoto T; Tomich JM; Montal M
    FEBS Lett; 1993 Apr; 320(3):261-6. PubMed ID: 7681786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two mode ion channels induced by interaction of acidic amphipathic alpha-helical peptides with lipid bilayers.
    Lee S; Tanaka T; Anzai K; Kirino Y; Aoyagi H; Sugihara G
    Biochim Biophys Acta; 1994 Apr; 1191(1):181-9. PubMed ID: 7512383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism: implications for therapeutic strategies against amyloidosis.
    Kourie JI; Culverson AL; Farrelly PV; Henry CL; Laohachai KN
    Cell Biochem Biophys; 2002; 36(2-3):191-207. PubMed ID: 12139405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion channel formation by synthetic analogues of staphylococcal delta-toxin.
    Kerr ID; Dufourcq J; Rice JA; Fredkin DR; Sansom MS
    Biochim Biophys Acta; 1995 Jun; 1236(2):219-27. PubMed ID: 7540870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.